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Abstract

As a result of manufacturing processes, real surfaces have roughness and surface curvature.

The real contact occurs only over microscopic contacts, which are typically only a few per-

cent of the apparent contact area. Because of the surface curvature of contacting bodies, the

macrocontact area is formed, the area where microcontacts are distributed randomly. The heat

flow must pass through the macrocontact and then microcontacts to transfer from one body

to another. This phenomenon leads to a relatively high temperature drop across the inter-

face. Thermal contact resistance (TCR) is a complex interdisciplinary problem, which includes

geometrical, mechanical, and thermal analyses. Each part includes a micro and a macro scale

sub-problem. Analytical, experimental, and numerical models have been developed to predict

TCR since the 1930’s. Through comparison with more than 400 experimental data points, it

is shown that the existing models are applicable only to the limiting cases and none of them

covers the general non-conforming rough contact. The objective of this study is to develop a

compact analytical model for predicting TCR for the entire range of non-conforming contacts,

i.e., from conforming rough to smooth sphere-flat in a vacuum.

The contact mechanics of the joint must be known prior to solving the thermal problem.

A new mechanical model is developed for spherical rough contacts. The deformation modes

of the surface asperities and the bulk material of contacting bodies are assumed to be plas-

tic and elastic, respectively. A closed set of governing relationships is derived. An algorithm

and a computer code are developed to solve the relationships numerically. Applying Buck-

ingham Pi theorem, the independent non-dimensional parameters that describe the contact

problem are specified. A general pressure distribution is proposed that covers the entire spher-

ical rough contacts, including the Hertzian smooth contact. Simple correlations are offered for

the general pressure distribution and the radius of the macrocontact area, as functions of the

non-dimensional parameters. These correlations are compared with experimental data collected

by others and good agreement is observed. Also a criterion is offered to identify the flat surface,

where the effect of surface curvature on the contact pressure is negligible.

Thermal contact resistance is considered as the superposition of macro and micro thermal

components. The flux tube geometry is chosen as the basic element in the thermal analysis

of microcontacts. Simple expressions for determining TCR of non-conforming rough joints are
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derived which cover the entire range of TCR by using the general pressure distribution and the

flux tube solution. A complete parametric study is performed; it is seen that there is a value of

surface roughness that minimizes TCR. The thermal model is verified with more than 600 data

points, collected by many researchers during the last 40 years, and good agreement is observed.

A new approach is taken to study the thermal joint resistance. A novel model is developed

for predicting the TCR of conforming rough contacts employing scale analysis methods. It is

shown that the microcontacts can be modeled as heat sources on a half-space for engineering

applications. The scale analysis model is extended to predict TCR over the entire range of

non-conforming rough contacts by using the general pressure distribution developed in the

mechanical model. It is shown that the surface curvature and contact pressure distribution

have no effect on the effective micro thermal resistance. A new non-dimensional parameter is

introduced as a criterion to identify the three regions of TCR, i.e., the conforming rough, the

smooth spherical, and the transition regions.

An experimental program is designed and data points are collected for spherical rough

contacts in a vacuum. The radius of curvature of the tested specimens are relatively large (in

the order of m) and can not be seen by the naked eye. However, even at relatively large applied

loads the measured joint resistance (the macro thermal component) is still large which shows

the importance of surface out-of-flatness/curvature. Collected data are compared with the scale

analysis model and excellent agreement is observed. The maximum relative difference between

the model and the collected data is 6.8 percent and the relative RMS difference is approximately

4 percent.

Additionally, the proposed scale analysis model is compared/verified with more than 880

TCR data points collected by many researchers. These data cover a wide range of materials,

surface characteristics, thermal and mechanical properties, mean joint temperature, directional

heat transfer effect, and contact between dissimilar metals. The RMS difference between the

model and all data is less than 13.8 percent.
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NOMENCLATURE

A = area, m2

a = radius of contact, m

a0L = relative radius of macrocontact, aL/aH

as = radius of microcontacts, m

b = flux tube radius, m

B = ratio of macrocontact over specimen radius, aL/bL

c0 = function of τ , 1.8 τ−0.028

c00 = function of τ , 0.31 τ0.056

c1 = microhardness coefficients, Pa

c2 = microhardness coefficients

CMY = Cooper, Mikic, and Yovanovich model

d = mean plane separation, GW model

dv = Vickers indentation diagonal, µm

dr = increment in radial direction, m

E = Young’s modulus, Pa

E0 = equivalent elastic modulus, Pa

F = external force, N

F ∗ = relative force error

fi = discrete point forces at microcontacts, N

GW = Greenwood and Williamson model

H,HB = bulk hardness, Pa

H 0 = c1 (1.62σ
0/m)c2 , Pa

H∗ = c1 (σ
0/m)c2 , Pa

Hmic = microhardness, Pa

HBGM = geometric mean Brinell hardness, Pa

h = thermal contact conductance, W/m2K

k = thermal conductivity, W/mK

ks = harmonic mean thermal conductivity,W/mK

L = sampling length, m; conforming rough limit length scale L = b2L/ (σ/m) , m

xviii



m = effective mean absolute surface slope

m0 = effective RMS surface slope

ns = number of microcontacts

P = pressure, Pa

P0 = maximum contact pressure, Pa

P 00 = relative maximum contact pressure, P0/P0,H

P ∗ = non-dimensional pressure, F/
¡
πb2LH

∗¢
Q = heat flow rate, W

q = heat flux, W/m2

R = thermal contact resistance, K/W

R∗ = non-dimensional thermal resistance

RMS = root mean square

Ra = arithmetic average surface roughness, µm

Rq = RMS surface roughness, µm

r, z = cylindrical coordinates

s = 0.95/ (1 + 0.071c2)

T = temperature, K

TCR = Thermal Contact Resistance, K/W

u = sphere profile, m

u0 = maximum indentation, m

Y = mean surface plane separation, m

Greek

α = non-dimensional parameter ≡ σρ/a2H

β = summits radii of curvature, m

γ = general pressure distribution exponent

γGW = Greenwood and Williamson plasticity index

γMikic = Mikic plasticity index

δ = surface max out-of-flatness, m

ε = flux tube relative radius ≡ a/b
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Θ = non-dimensional parameter ≡ RL/Rs
θ = angle of the surface asperities, rad
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λ = non-dimensional separation ≡ Y/√2σ
ν = Poisson’s ratio

ρ = radius of curvature, m
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τ = non-dimensional parameter ≡ ρ/aH

φ = normal probability function

ψ = dimensionless spreading resistance

Ω = non-dimensional parameter

ω = normal deformation, m
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ξhardness = empirical correction factor, = 0.3

Subscripts
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Chapter 1

Introduction

1.1 General

Heat transfer through interfaces formed by the mechanical contact of two non-conforming rough

solids is an important phenomenon in a wide range of applications: microelectronics cooling,

cryogenic insulations, heat exchangers, spacecraft structures, satellite bolted joints, and ball

bearings. Real surfaces have roughness and surface curvature/out-of-flatness simultaneously.

Because of surface roughness, contact between two surfaces occurs only over microscopic contact

spots which are located in the “contact plane”. The real area of contact, i.e., the total area of

microcontacts, is a small fraction of the nominal contact area, typically a few percent [1, 2]. As

illustrated in Fig. 1-1, the macrocontact area, the area where microcontacts are distributed, is

formed as a result of surface curvature of contacting bodies. Heat flow is constricted to pass

through the macrocontact and then microcontacts. This phenomenon is indirectly observed

through a relatively high temperature drop across the interface. Here an example is given to

show the magnitude and relative importance of thermal contact resistance (TCR) versus the

“bulk resistance”. Consider two 3×10−4 m2 flat SS plates with a thickness of 5mm and surface

roughness of 1 µm. The TCR for the bare joint in a vacuum under 0.1 MPa contact pressure,

is in the order of 30 K/W as compared to the plate bulk resistance of 0.2 K/W .

Thermal energy can be transferred between contacting bodies by three different modes, i)

conduction at the microcontacts, ii) conduction through the interstitial fluid in the gap between

the contacting solids, and iii) thermal radiation across the gap. The radiation heat transfer
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Figure 1-1: Non-conforming rough contact in vacuum

remains small, less than two percent of the conduction through the microcontacts, in the range

of interest, i.e., Tc ≤ 100 ◦C. Therefore it can be neglected for most engineering applications,
see Appendix D. Since in this study the interstitial fluid is assumed to be absent, the only

remaining heat transfer mode is conduction at the microcontacts.

1.2 Definition of Thermal Contact Resistance

The thermal resistance caused by the interface is called the thermal joint resistance, Rj , and is

defined as follows [3]:

Rj = ∆T/Q (1.1)

where Q is the steady-state heat flow normal to the interface. The joint temperatures are

obtained by extrapolating the steady-state temperature profiles of the contacting bodies to the

interface and the temperature drop ∆T is the difference between two joint temperatures.

The thermal joint conductance, hj , is defined in the manner of the film coefficient in con-
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vective heat transfer, i.e.,

hj = Q/ (∆TAa) (1.2)

where Aa is the apparent contact area.

1.3 Macro and Micro Thermal Resistances

As illustrated in Fig. 1-1, when the heat flow Q is transferred from a heat source at T1 to a

heat sink at T2, it experiences a macro thermal constriction RL,1 and spreading RL,2 resistances

as a result of the macrocontact area. Heat is then passed through ns (parallel) microcontacts

in the contact plane, which is called the effective microcontact resistance, Rs. Therefore, TCR

of a non-conforming rough joint in a vacuum can be written as

Rj = RL +Rs (1.3)

where RL = RL,1 +RL,2 and Rs = Rs,1 +Rs,2.

Equation (1.3) is a general expression and applicable to all spherical rough contacts. Many

researchers including Clausing and Chao [4], Nishino et al. [5], and Lambert and Fletcher [6]

used this relationship. A proof of Eq. (1.3) is given in Chapter 5.

Two limiting cases can be distinguished for Eq. (1.3), i) the conforming rough limit, i.e.,

contact of flat rough surfaces where the surface curvatures are very large thus macro thermal

resistance RL is negligible and micro thermal resistance Rs is the controlling component, ii) the

elastoconstriction limit where the radii of curvature of contacting bodies are relatively small and

surfaces are smooth, thus the macro thermal resistance RL is predominant and Rs is negligible,

and iii) transition region or general contact in which both RL and Rs exist and have the same

order of magnitude. Figure 1-2 shows the above-mentioned regions and their corresponding

thermal resistance. Later in Chapter 5, a non-dimensional parameter will be introduced and a

criterion will be proposed to specify these limits.
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1.4 Problem Statement

Thermal contact resistance consists of three different parts: geometrical, mechanical, and ther-

mal. Each problem includes a macro and a micro sub-problem. Figure 1-3 illustrates the TCR

analysis and its components. The heart of a TCR analysis is its mechanical part. To solve

the mechanical problem, the geometry of the contacting surfaces (macro and micro) must be

quantitatively described. The mechanical problem also includes two parts: macro or large-scale

contact and micro or small-scale contact. The macroscale mechanical analysis determines the

macrocontact radius, aL, and the pressure distribution; the microscale analysis predicts sepa-

ration between the mean contacting planes, size and number of microcontacts, and the relative

size of microcontacts. The macro and the micro mechanical problems are strongly coupled.

The thermal analysis, based on the results of the mechanical analysis, is then used to calculate

the microscopic and macroscopic thermal resistances.

The geometrical and mechanical analyses of the TCR can be affected as a result of heat

transfer and temperature changes in the vicinity of the contact area. For instance, thermal
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stresses and thermal expansions can lead to changes in surface characteristics and the stress

field which in turn can affect the geometrical and mechanical analyses, respectively. However, in

this study, these influences are assumed to have secondary order effects, and thus are neglected.

As a result of this simplification, the three components of the thermal contact resistance problem

can be decoupled as shown in Fig. 1-3.

1.5 Objectives and Overview

Existing theoretical geometrical, mechanical, and thermal models are reviewed in Chapter 2.

Through comparison with more than 400 experimental data points, collected by many re-

searchers during the last forty years, it can be shown that the existing TCR models are ap-

plicable only to the limiting cases namely, conforming rough contacts and smooth sphere-flat

(elastoconstriction) contacts and do not cover the entire range of TCR. Therefore, the need for

a theoretical model that can predict TCR over the entire range of contacts still exists.

The objective of this study is to develop compact analytical model(s) for predicting TCR

for the entire range of non-conforming joints, i.e., from conforming rough to smooth sphere-flat

(elastoconstriction) contact. Another purpose of this research is to find a criterion to define a

“flat surface” where the effect of surface curvature on TCR is negligible.

In Chapter 3, a new analytical contact mechanics model is developed, which enables the

prediction of contact parameters such as pressure distribution, mean size and number of mi-

crocontacts, and radius of the macrocontact area. A general pressure distribution is developed

which covers the entire range of spherical contacts from the smooth Hertzian to the conforming

rough contacts. Compact correlations are developed for determining the radius of the macro-

contact area, the maximum contact pressure, and the compliance by using the Buckingham Pi

theorem and curve-fitting techniques. These expressions are used in the thermal joint analyses

in Chapters 4 and 5. The compliance and the contact radius predicted by the model are com-

pared against more than 220 experimental data points collected by others and showed good

agreement.

In Chapter 4, the results of the mechanical model are used to develop an analytical thermal

model for determining TCR of non-conforming rough contacts in a vacuum. The thermal model
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is constructed on the premise that the mean separation between the contacting surfaces in an

infinitesimal surface element can be assumed constant. Therefore, the conforming rough model

of Cooper et al. [7] can be implemented to calculate the surface element thermal resistance.

The macrocontact resistance is calculated using the flux tube solution. Additionally, simple

correlations for determining TCR are derived using the general pressure distribution introduced

in Chapter 3 and the Yovanovich [8] correlation for thermal conductance of conforming rough

contacts. These correlations cover the entire range of TCR from conforming rough to smooth

spherical contacts.

In Chapter 5, a novel approach is taken by employing scale analysis methods to develop an

analytical TCR model for conforming rough contacts. Instead of using probability relationships

to calculate size and number of microcontacts, scale relationships are derived based on physical

observations. The scale relationship shows the trend of the experimental data. The constant

of the scale relationship is found through comparison with the data.

To verify the proposed thermal model, an experimental program was conducted to obtain

data for non-conforming rough contacts in a vacuum. The contact assembly included a bead-

blasted flat specimen placed in contact with a smooth polished spherical sample in series with

an ARMCO iron flux meter in a vacuum chamber. The collected data show excellent agreement

with the model (maximum relative difference less than 6.8%).

In addition, both thermal models, developed in Chapters 4 and 5 are compared and verified

with more than 880 TCR data points collected by many researchers during the past 40 years.

The data cover a wide range of surface characteristics, thermal and mechanical properties, mean

contact temperature, directional heat transfer, and contact between dissimilar metals.
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Chapter 2

Literature Review

2.1 Introduction

Analytical, experimental, and numerical models have been developed to predict TCR since

the 1930’s. Several hundred papers on thermal contact resistance have been published which

illustrates the importance of this topic, and also indicates that the development of a general

predictive model is difficult.

In this Chapter, the TCR problem is divided into three different problems: geometrical,

mechanical, and thermal. Each problem includes a macro and micro scale sub-problem; existing

theories and models for each part are reviewed. Empirical correlations for microhardness, and

the equivalent (sum) rough surface approximation are discussed. Suggested correlations for

estimating the mean absolute surface slope are summarized and compared with experimental

data.

The classical conforming rough contact models, i.e., elastic and plastic, as well as elasto-

plastic models are reviewed. A set of dimensionless relationships are derived for the contact

parameters, i.e., the mean microcontact size, number of microcontacts, the real contact area,

and the external load as functions of the dimensionless separation λ, for the above models.

These scale relationships are plotted; it is graphically shown that the trends of these models,

in terms of the contact parameters, are similar.

The most common assumptions of existing thermal models are summarized. As basic el-

ements of thermal analysis, spreading resistance of a circular heat source on a half-space and
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flux tube are reviewed, also existing flux tube correlations are compared.

More than 400 TCR data points collected by different researchers during last forty years

are grouped into two limiting cases: conforming rough, and elastoconstriction. Existing TCR

models are reviewed and compared with the experimental data at these two limits. It is shown

that the existing theoretical models are limited to a certain range and do not cover both of the

above-mentioned limiting cases.

2.2 Geometrical Analysis

It is necessary to consider the effect of both surface roughness and surface curvature/out-of-

flatness on the contact of non-conforming rough surfaces. Therefore, the geometrical analysis

is divided into micro and macro components.

2.2.1 Micro Geometrical Analysis

All solid surfaces are rough, and this roughness or surface texture can be thought of as the

surface deviation from the nominal topography. Surface textures can be created using many

different processes. Most man-made surfaces, such as those produced by grinding or machining

have a pronounced “lay”. Generally, the term “Gaussian surface” is used to refer to a surface

where its asperities are isotropic and randomly distributed over the surface. It is not easy to

produce a wholly isotropic roughness. The usual procedure for experimental purposes is to

air-blast a metal surface with a cloud of fine particles, in the manner of shot peening, which

gives rise to a random rough surface.

According to Liu, et al. [9] five types of instruments are currently available for measur-

ing the surface topography: stylus-type surface profilometer, optical (white-light interference)

measurements, Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and

Scanning Tunneling Microscope (STM). Among these, the first two instruments are usually

used for macro-to-macro asperity measurements, whereas the others may be used for micro

or nanometric measurements. Surface texture is most commonly measured by a profilometer,

which draws a stylus over a sample length of the surface. A datum or centerline is established by

finding the straight line, or circular arc in the case of round components, from which the mean

9



Table 2.1: Correlations for m, Gaussian surface

Reference Correlation
Tanner and Fahoum [11] m = 0.152 σ0.4

Antonetti et al. [12] m = 0.124 σ0.743, σ ≤ 1.6 (µm)
Lambert and Fletcher [6] m = 0.076 σ0.52

square deviation is a minimum. The arithmetic average of the absolute values of the measured

profile height deviations, Ra, taken within a sampling length from the graphical centerline [10].

The value of Ra is

Ra =
1

L

Z L

0
|z (x)| dx (2.1)

where, L is the sampling length in the x direction and z is the measured value of the surface

height along this length. When the surface is Gaussian, the standard deviation σ is identical

to the RMS value, Rq.

σ = Rq =

s
1

L

Z L

0
z2 (x) dx (2.2)

For a Gaussian surface, Ling [13] showed that the average and the RMS heights are related as

follows:

Rq ≈
r

π

2
Ra ≈ 1.25Ra (2.3)

Similarly, the absolute average and RMS asperity slopes, m and m0 respectively, can be deter-

mined across the sampling length from the following:

m =
1

L

Z L

0

¯̄̄̄
dz (x)

dx

¯̄̄̄
dx, m0 =

s
1

L

Z L

0

µ
dz (x)

dx

¶2
dx (2.4)

Mikic and Rohsenow [14] showed that for Gaussian surfaces the relationship between the average

and RMS values of the asperity slopes is m0 ≈ 1.25m.
Tanner and Fahoum [11] and Antonetti et al. [12], using published experimental surface

data, suggested empirical correlations to relate RMS asperity slope, m0, to average roughness,

Ra. Lambert and Fletcher [6], also using the same method, correlated the absolute average

asperity slopes, m, as a function of RMS roughness in micrometers; correlations for m are

summarized in Table 2.1. Figure 2-1 illustrates the comparison between these correlations and

experimental data. As shown in Fig. 2-1, the uncertainty of the above correlations is high, and
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Figure 2-1: Comparison between correlations for m and experimental data

use of these correlations are justifiable only where the surface slope is not reported and/or a

rough estimation of m is needed.

Equivalent (Sum) Rough Surface

According to the examination of the microgeometry with equivalent magnitude in the vertical

direction and in the traversing direction, asperities seem to have curved shapes at their tops

[15]. A common way to model the surface roughness is to represent surface asperities by simple

geometrical shapes with a probability distribution for the different asperity parameters involved.

One of the first presentations to use this asperity-based model is found in Coulomb’s work in

1782. To explain the laws of friction, he assumed that the asperities possessed a spherical shape,

all of which had the same radius and the same summit altitude. Greenwood and Williamson [1]

assumed that each asperity summit had a hemi-spherical shape whose height above a reference

plane had a normal (Gaussian) probability density function. Williamson et al. [16] have shown

experimentally that many of the techniques used to produce engineering surfaces give a Gaussian

distribution of surface heights.
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The solution of any contact mechanics problem requires that the geometry of the intersection

and overlap of the two undeformed surfaces be known as a function of their relative position.

Greenwood [17] stated that; “a genuine treatment of two rough surfaces is complicated by the

difficulty of describing the unit event, the formation of a single contact spot. For example, if

both surfaces are covered by spheres, it is necessary to study the contact of one sphere on the

shoulder of another, and then evaluate the probabilities of different degrees of misalignment,

in order to get the average unit event. A non-genuine treatment is comparatively simple: both

surfaces are taken to be rough with normal distributions. The statistical treatment now concerns

the probability of the sum of two heights (which is also normally distributed) exceeding the

separation, and this is exactly equivalent to a distribution of a single variable.” Following the

non-genuine approach, one can simplify the contact between Gaussian rough surfaces by the

contact between a single Gaussian surface, having the effective (sum) surface characteristics,

placed in contact with a perfectly smooth flat surface. Also, since the slope, m, of a profile

is proportional to the difference between adjacent equispaced ordinates; m is Gaussian if the

profile is Gaussian [18]. This simplification was used by many researchers, such as Clausing

and Chao [4], Cooper et al. [7], Francis [19], Johnson [20], and Persson [21]. The equivalent

roughness and surface slope can be calculated from

σ =
q
σ21 + σ22 and m =

q
m21 +m

2
2 (2.5)

According to Francis [19], a contact model based on the sum (equivalent) surface, circumvents

the problem of misalignment of contacting peaks; in addition, the sum surface sees peak to

valley and peak to saddle contacts. The sum surface of two Gaussian surfaces is itself Gaussian

and if parent surfaces are not exactly Gaussian, the sum (equivalent) surface will be closer

to Gaussian than the parent surfaces. Additionally, the sum surface will be in general less

anisotropic than the two contacting surfaces, thus the Gaussian sum surface is a reasonable

basis for a general contact model [19]. Figure 2-2 shows a normal section through the contact

in which the surfaces are imagined to overlap without deforming, and the equivalent rough or

sum surface of the contact in the same normal section. The overlap geometry as a function

of the mean separation, Y, of the undeformed surfaces is thus given directly and exactly by
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the shape of the equivalent rough surface. The number of microcontacts formed is simply the

number of equivalent surface peaks that have Z ≥ Y .

2.2.2 Macro Geometrical Analysis

Many studies on thermal contact resistance assume an ideally uniform distribution of micro

contact spots, i.e., conforming rough surface models. Such approaches are successful when the

macroscopic nonuniformity of the contact is negligible. However, no real engineering surfaces

are perfectly flat, thus the influence of macroscopic nonuniformity can never be ignored. Con-

sidering the waviness or out-of-flatness of contacting surfaces in a comprehensive manner is

very complex because of the random nature of the waviness. Certain simplifications must be

introduced to describe the macroscopic topography of surfaces by a few parameters. A sphere

is the simplest example of a macroscopically homogenous surface. Specifically, its profile is

described only by its radius. Theoretical approaches by Clausing and Chao [4], Mikic and

Rohsenow [14], Yovanovich [22], Nishino et al. [5], and Lambert and Fletcher [6] assume that

a spherical profile may approximate the shape of the macroscopic nonuniformity. According

to Lambert [23] this assumption is justifiable, because nominally flat engineering surfaces are

often spherical, or crowned (convex) with a monotonic curvature in at least one direction.

13



According to Johnson [20], in static frictionless contact of solids, the contact stresses depend

only upon the relative profile of the two surfaces, i.e., upon the shape of the interstitial gap

between them before loading. The actual system geometry may be replaced, without loss of

generality, by a flat surface and a profile, which results in the same undeformed gap between

the surfaces. For convenience, all elastic deformations can be considered to occur in one body

which has an effective elastic modulus, and the other body is assumed to be rigid. The effective

elastic modulus can be found from

1

E0
=
1− υ21
E1

+
1− υ22
E2

(2.6)

where E and υ are the Young’s modulus and Poisson’s ratio, respectively. For the contact of

two spheres, the effective radius of curvature is:

1

ρ
=
1

ρ1
+
1

ρ2
(2.7)

For relatively large radii of curvature, where the contacting surfaces are nearly flat, an approx-

imate geometrical relationship can be found between radius of curvature and the maximum

out-of-flatness [4]

ρ =
b2L
2δ

(2.8)

where δ is the maximum out-of-flatness of the surface and bL is the radius of the contacting

bodies.

Figure 2-3 details the procedure, which has been used widely for the geometric modeling

of the actual contact between two curved rough bodies. As a result of the above, the complex

geometry of non-conforming rough contacts can be simplified to the contact of the equivalent

truncated spherical surface with the equivalent rough flat.

2.2.3 Microhardness

Hardness is defined as the resistance to permanent deformation; hardness definitions and tests

can be found in various standard textbooks e.g. Tabor [2], and Mott [24]. The most common

hardness testing method is the static indentation. In a static indentation test, a steady load

14



  

  
  

a) contact of non-conforming 
rough surfaces

segments

c) rough sphere-flat contact, 
effective radius of curvature

ρ

σ

effective radius and roughness 

ρ  

  

  

  

ρ

ρ

Lb

1

2

σ
σ1

2

  Lb

δ

Figure 2-3: Flow diagram of geometrical modeling

is applied to an indenter which may be a ball, cone or pyramid and the hardness is calculated

from the area or depth of indentation produced. Hegazy [25] demonstrated through experi-

ments with four alloys, SS 304, nickel 200, zirconium-2.5% niobium, and Zircaloy-4, that the

effective microhardness is significantly greater than the bulk hardness. As shown in Fig. 2-4,

microhardness decreases with increasing the depth of indenter until bulk hardness is obtained.

Hegazy concluded that this increase in the plastic yield stress (microhardness) of the metals

near the free surface is a result of local extreme work hardening or some surface strengthening

mechanism. He derived empirical correlations to account for the decrease in contact micro-

hardness of the softer surface with increasing depth of penetration of asperities on the harder

surface

Hv = c1
¡
d0v
¢c2 (2.9)

where Hv is the Vickers microhardness in GPa, d0v = dv/d0 and d0 = 1 µm, dv is the Vickers

indentation diagonal in µm, and c1, c2 are correlation coefficients determined from Vickers mi-

crohardness measurements. Table 2.2 shows c1 and c2 for some materials. Relating the hardness

of a microcontact to the mean size of microcontacts, Hegazy [25] suggested a correlation for
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Table 2.2: Vickers microhardness coefficients, Hegazy 1985

Material c1(GPa) c2
Zr-4 5.677 -0.278
Zr-2.5wt% Nb 5.884 -0.267
Ni 200 6.304 -0.264
SS 304 6.271 -0.229
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effective microhardness (conforming rough surfaces)

Hmic = c1

µ
0.95

σ0

m

¶c2
(2.10)

where σ0 = σ/σ0 and σ0 = 1 µm, σ is surface roughness in micrometers.

Microhardness depends on several parameters, mean surface roughness, mean slope of as-

perities, method of surface preparation, and applied pressure. Song and Yovanovich [26] related

Hmic to the surface parameters and nominal pressure (conforming rough surface)

P

Hmic
=

·
P

c1 (1.62σ0/m)c2

¸ 1

(1 + 0.071c2) (2.11)

Sridhar and Yovanovich [27] suggested empirical relations to estimate Vickers microhardness

coefficients, using the bulk hardness of the material. Two least-square-cubic fit expressions were

reported

c1 = HBGM
¡
4.0− 5.77κ+ 4.0κ2 − 0.61κ3¢

c2 = −0.57 + 0.82κ− 0.41κ2 + 0.06κ3
(2.12)

where κ = HB/HBGM ,HB is the Brinell hardness of the bulk material, andHBGM = 3.178(GPa).

The above correlations are valid for the range 1.3 ≤ HB ≤ 7.6 GPa, the RMS percent difference
between data and calculated values were reported; 5.3% and 20.8% for c1, and c2, respectively.

Milanez et al. [28] studied the effect of microhardness coefficients on TCR by comparing the

TCR’s computed from the measured versus the estimated, from Eq. (2.12), microhardness coef-

ficients. They concluded that despite the difference between the measured and estimated values

of microhardness coefficients, the TCR’s predicted by both methods are in good agreement.

2.3 Mechanical Analysis

Figure 2-5 illustrates the mechanical analysis overview for contact of spherical rough surfaces,

which includes; a macro and a micro part. Existing theories/models for each part (macro

and micro) are categorized based on the normal deformation mode of the bulk (substrate) and

asperities into: elastic, plastic, and elastoplastic groups.
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2.3.1 Macrocontact Problem

When two smooth solid spheres, or equivalently a flat and the effective sphere, are pressed

against each other, with an increase in external load, the three ranges of loading purely elastic,

elastic-plastic (contained), and fully plastic (uncontained) occur in most engineering structures.

Hertz [29] developed his elastic contact theory by introducing the simplification that each body

can be regarded as an elastic half-space loaded over a small contact region of its plane surface.

He also assumed surfaces are continuous and non-conforming, strains are small (to be in the

elastic limit), surfaces are frictionless, and the pressure distribution is P (r) = P0
q
1− (r/aH)2.
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The Hertzian theory expressions for spheres can be summarized as

aH =

µ
3Fρ

4E0

¶1/3
ω0 =

a2H
ρ
=

µ
9F 2

16ρE02

¶1/3
(2.13)

P0 =
3F

2πa2H
=

Ã
6FE02

π3ρ2

!1/3

where ω0 is the maximum normal deformation and P0 is the maximum contact pressure (at the

center of the contact).

According to Johnson [20], the load at which plastic yield begins in the contact of two

solids is related to the yield point of the softer material. The yield point can be found either

from Tresca’s maximum shear stress, or Von Mises’ shear strain-energy criterion. When the

yield point is first exceeded, the plastic zone is small and fully contained by the material which

remains elastic, so that the plastic strains are of the same order of magnitude as the surrounding

elastic strains. In these circumstances the material displaced by the indenter is accommodated

by an elastic expansion of the surrounding solid. As the indentation becomes more severe,

the plastic zone (core) expands, and an increasing pressure is required beneath the indenter

to produce the necessary expansion. Eventually the plastic zone breaks out to the free surface

and displaced material is free to escape by plastic flow to the sides of the indenter. This is the

uncontained mode of deformation, which should be analyzed by the theory of rigid-plastic solids

[20]. However, the contact load must be increased about 400 times from the point of initial

yielding to the state of fully plastic flow, which indicates that the elastoplastic transitional

region spans a broad range of loading.

When the plastic deformation is severe so that the plastic strains are large compared with

the elastic strains, the elastic deformation may be neglected. Provided the material does not

strain-harden significantly, it may be idealized as a perfectly plastic solid which flows plastically

at a constant stress (roughly three times the yield stress) [20]. A loaded body of rigid-plastic

material consists of regions in which plastic flow takes place, and regions where there is no

deformation due to the assumption of rigidity. Hardy et al. [30], using a numerical analysis,

showed that the plastic flow leads to a flattening of the pressure distribution, and at high loads
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may peak slightly towards the edge of the contact area.

2.3.2 Microcontact Problem

Based on the assumed deformation mode of asperities, existing microcontact mechanical models

can be categorized into three main groups: plastic, elastic, and elastoplastic models. The

fundamental assumptions, which are common in most of the models can be summarized as

• contacting surfaces are rough, with a Gaussian asperity distribution

• behavior of a given microcontact is independent of all other microcontacts

• interfacial force on any microcontact spot acts normally (no friction)

• the deformation mechanics (i.e. the stress and displacement fields) are uniquely deter-
mined by the shape of the equivalent surface.

Plastic Models

Abott and Firestone [31] developed the most widely used model for a fully plastic contact.

With the concept of equivalent roughness, the model assumes that the asperities are flattened

or equivalently penetrate into the smooth surface without any change in the shape of the part

of surfaces not yet in contact. Therefore, bringing the two surfaces together within a distance

Y is equivalent to slicing off the top of the asperities at a height Y above the mean plane. Since

the real area of contact is much smaller than the apparent contact area, the pressure at the top

of the asperities must be sufficiently large that they are comparable with the strength of the

materials of the contacting bodies. Bowden and Tabor [32], and Holm [33] suggested that these

contact pressures are equal to the flow pressure of the softer of the two contacting materials

and the normal load is then supported by plastic flow of its asperities. Therefore, pressure at

microcontacts will be equal to the microhardness and effectively independent of load and the

contact geometry. The real area of contact is then proportional to the load, Ar/Aa = Pm/Hmic,

where Pm is the mean apparent contact pressure.

Pullen and Williamson [34] experimentally investigated plastic flow under large loads. They

assumed that material displaced from the contacting regions must reappear by raising some part
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of the non-contacting surface. They assumed that the volume of material remained constant

and that the material that is plastically displaced appears as a uniform rise over the entire

surface. Since the uniform rise will not affect the shape of the surface outside the contact area,

they showed that the contact area due to the interaction of micro contacts is not proportional

to the normal load at relatively high loads; and proposed as a good approximation; Ar/Aa

= Pp/ (1 + Pp) , where Pp = Pm/Hmic. Note that this phenomenon is important only at

relatively large pressures.

Some authors used conical or curved shapes to describe the morphology of asperities. Tsuk-

izoe and Hisakado [35, 36], assumed a conical shape for surface asperities of equal base angle,

which depends on the surface mean absolute slope. They proposed a statistical contact model

for predicting the contact spot size and density for an isotropic Gaussian rough surface in con-

tact with an ideal smooth flat surface. On the basis of this assumption and neglecting the

asperity interactions, they obtained the following expressions for microcontact size and number

as =

√
2

π

(σ/m)

λ

ns =

√
π

8

³m
σ

´2
λ exp

¡−λ2¢Aa (2.14)

where, λ = Y/
√
2σ is the dimensionless separation.

Cooper et al. [7], based on the level-crossing theory and using the sum surface approx-

imation, derived relationships for mean microcontact size, and number of microcontacts by

assuming hemispherical asperities whose height and surface slopes have Gaussian distributions

as =

r
8

π

³ σ
m

´
exp

¡
λ2
¢
erfc (λ)

ns =
1

16
Aa

³ σ
m

´2 exp ¡−2λ2¢
erfc (λ)

(2.15)

Their model was essentially based on the assumption that each microcontact consists of two

hemispherical asperities in symmetric plastic contact. They also showed that the ratio of real

area of contact to the apparent area, as a function of Y , could be related to the probability

function
Ar
Aa

=

Z ∞

Y
φ (z) dz =

1

2
erfc (λ) (2.16)

21



surface 
mean 
plane

mean 
summit 
height

equivalent elastic rough surface

rigid smooth flat

z

β

z

d

Y
β

s

Figure 2-6: Greenwood and Williamson 1966 geometrical model

where φ (z) is the normal probability function of the asperity heights defined as

φ (z) =
1√
2πσ

exp

µ−z2
2σ2

¶
(2.17)

Elastic Models

For applications such as lubrication or moving machine parts in which the contacting surfaces

meet many times, Archard [37] pointed out that the asperities may flow plastically at first, but

they must reach a steady-state in which the load is supported elastically. He then offered a

model in which each asperity is covered with micro asperities, and each micro asperity with

micro-micro asperities that gave successive closer approximations to the friction law, Ar = F,

as more stages were considered.

Greenwood and Williamson [1] (GW) developed an elastic model for contact of flat rough

surfaces based on the deformation of an average size summit. As shown in Fig. 2-6, they as-

sumed that all summits have the same radius of curvature at their top, and possess a Gaussian

distribution about a mean reference plane, and the distribution of summit heights is the same

as the heights standard deviation, i.e., σsummit = σ. The GW model required three input

parameters: the standard deviation of summit height distribution σsummit, the density of sum-

mits ηGW , and the radius of curvature of the summits β that was assumed to be constant.
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Relationships for the GW model, as reported, are

ns = ηGWAaI0
¡
d0
¢

Ar = πηGWAaβσI1
¡
d0
¢

(2.18)

F =
4

3
ηGWAaβ

1/2σ3/2E0I3/2
¡
d0
¢

where d0 = d/σ and;

In
¡
d0
¢
=

1√
2π

Z ∞

d0

¡
s− d0¢n exp ¡−s2/2¢ ds (2.19)

Unlike other models, the GW model is based on the contact of summits and separation, d, is

measured from the mean summit line (not the surface mean line), which is located somewhere

above the mean surface plane. Since it was assumed that the summits’ standard deviation

is the same as the surface roughness, the GW relationships can be re-written as functions of

λ = Y/
√
2σ (to make the relationships comparable with other models). After evaluating the

integrals and simplifying, one can find

ns =
1

2
ηGWAa erfc (λ)

Ar =

√
π

2
ηGWAaβσ

£
exp

¡−λ2¢−√πλ erfc (λ)¤ (2.20)

F =
21/4

3
√
π
ηGWAaE

0β1/2σ3/2
√
λ exp

¡−λ2/ 2¢ h¡1 + 2λ2¢K 1
4

¡
λ2/ 2

¢− 2λ2K 3
4

¡
λ2/ 2

¢i
where Kn (·) is the modified Bessel function of the second kind of the nth order.

The GW asperity model has been extended to include other contact geometries, e.g. spheri-

cal surfaces [38], more complex geometries, e.g. non-uniform radii of curvature of asperity peaks

[39], and anisotropic surfaces [40]. Whitehouse and Archard [39] and Onions and Archard [41]

further improved the statistic model by representing the features of the surface topography with

two parameters: the standard deviation, σ, and the exponent of an exponential correlation func-

tion, which was named the “correlation distance”. Bush et al. [42] developed an elastic contact

model for isotropic surfaces that treated the asperities as elliptical paraboloids with random

principal axis orientation and aspect ratio. O’Callaghan and Cameron [43] developed a model

for the isotropic problem addressed by Bush et al. [40]. In their model, both surfaces can be
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rough and asperities need not contact at their tops. O’Callaghan and Cameron [43] concluded,

as did Francis [19], that the contact of two rough surfaces was negligibly different from the

contact of a smooth and an equivalent rough surface. McCool [44] compared the basic GW

model with other more general isotropic and anisotropic models and found that the simpler

GW model, despite its simple form, gives good results.

Elastoplastic Models

Chang et al. [45], using GW model assumptions, presented a model based on volume conser-

vation of an asperity control volume during plastic deformation. The deformed asperity was

modeled as a truncated spherical segment and its radius was assumed to be the same as that

of the undeformed asperity. For all plastically deformed asperities the average pressure over

the contact area was assumed to be a factor of hardness, which was constant throughout the

elastic-plastic deformation. Zhao et al. [46], using the Chang et al. [45] model, developed

an elastic-plastic microcontact model for nominally flat rough surfaces. The transition from

elastic deformation to fully plastic flow of the contacting asperities was curve-fitted. A cubic

polynomial, smoothly joining the expressions for elastic and plastic area of contacts, spans the

elastoplastic region based on two extremes of the Chang et al. [45] model.

The advantage of the GW-type models is their relative simplicity and explicitness in ex-

pressions. However, assuming a constant summit radius is unrealistic; for a random surface,

β is also a random variable [19]. In addition β and ηGW cannot be measured directly and

must be calculated through statistical relationships, and are sensitive to the sampling length

of the surface measurement [20]. According to the GW model, the summits or “peaks” on a

surface profile are the points higher than their immediate neighbors over the sampling interval.

Recently Greenwood and Wu [47] reviewed the assumptions of the GW model and concluded

that “the GW definition of peaks is wrong and gives a false idea of both number and the radius

of curvature of asperities”. Greenwood and Wu proposed to return to the Archard [37] idea

that roughness consists of roughness on roughness and that the contact may be plastic at light

loads but it becomes elastic at heavier loads.
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2.3.3 Deformation Mode of Asperities

When real surfaces are pressed together they make contact at numerous points, which deform,

elastically, plastically or elastoplastically to support the load. According to Tabor [2] when

two metals are placed in contact “they will be supported on the tips of their asperities, at first

the deformation is elastic, but for asperities of the order of µm radius, the minutest loads

will produce plastic deformation. Indeed full plasticity may occur even for the hardest steels

at a load of the order of a few milligrams.” Tabor showed that in most practical cases, the

real area of contact is proportional to the applied load. It is also inversely proportional to

the effective hardness of the surface asperities. Greenwood [17] described the contact of two

surfaces as follows: “surfaces touch at a large number of contacts, and these contacts will be in

all the states from fully elastic, to fully plastic. The fully elastic ones are a negligible fraction

of the total; the effective flow pressure will be intermediate between plastic and elastic values.”

Considering that the plastic flow is irreversible and cannot be repeated on subsequent loadings,

Archard [37] emphasized the point that the normal contact must be elastic. He showed that

any elastic model (based on simple Hertzian theory) in which the number of contacts remains

constant will give Ar ∼ F 2/3, which does not satisfy the observed proportionality Ar ∼ F

reported by Tabor [2]. But, if the average contact size remains constant, and the number of

microcontact increases, the area will be proportional to the load.

Greenwood and Williamson [1] introduced a plasticity index as a criterion for plastic flow

of microcontacts, γGW = (E0/H)
p
σ/β. They reported that the load has little effect on the

deformation regime. When the index is less than 0.6, plastic contact could be caused only if the

surfaces were forced together under very large nominal pressure. When γGW ≥ 1 plastic flow will
occur even at small nominal pressures. Based on the plasticity index, they concluded that “most

surfaces have plasticity indices larger than 1.0, and thus, except for especially smooth surfaces,

the asperities will flow plastically under the lightest loads, as has been frequently postulated.”

Chang et al. [45] with the same assumptions as GW, set the criteria for the deformation

mode based on the deformation of an average asperity. For compliances less than the critical

compliance ωc, where ωc is the inception of plastic deformation based on experimental work

of Tabor [2] and Johnson [20], the contact is elastic and Hertzian theory can be applied. For

compliances higher than ωc, a plastic model was used. Mikic [48] proposed an alternative
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plasticity index, γMikic = Hmic/E
0m. Mikic also reported that the mode of deformation, as

stated by GW, depends only on material properties and the shape of the asperities, and it

is not sensitive to the pressure level. Mikic performed an analysis to determine the contact

pressure over the contact area based on the fact that all contact spots do not have the same

contact pressure, although the average contact pressure would remain constant. For surfaces

with γMikic ≥ 3, 90% of the actual area will have the elastic contact pressure, therefore the

contact will be predominantly elastic, and for γMikic ≤ 0.33, 90% of the actual area will have

the plastic contact pressure, therefore the contact will be predominantly plastic. He concluded

that for most engineering surfaces the asperity deformation mode is plastic and the average

asperity pressure is the effective microhardness.

To compare elastic and plastic models, Greenwood and Williamson [1] (GW) elastic, Cooper

et al. [7] (CMY) plastic, and Tsukizoe and Hisakado [35, 36] (TH) plastic models were cho-

sen, and their trends plotted versus the dimensionless mean separation. GW requires input

surface parameters; η, β and σ, while CMY and TH require σ, m, thus a quantitative com-

parison between these models requires detailed surface information, and would be restricted to

a particular case. However, for a contact, surface parameters are constant and do not change

as the mean separation varies. Therefore, we derive scale relationships and compare these

models qualitatively, by considering constant surface parameters. This comparison only illus-

trates trend/behavior of surface parameters predicted by each model as the separation changes.

Therefore, the absolute values of these parameters can not be inferred from the comparison,

i.e., Figs. ?? to ??.

Table 2.3 shows the scale relationships that were used in the comparison. The real area

of microcontacts was calculated from, Ar = πnsa
2
s. Additionally, as the fully plastic deforma-

tion of asperities was assumed for CMY and TH models, one can write F = HmicAr, where

microhardness Hmic is considered a constant for a contact.

The range of separation in typical real contacts is roughly 1.5 ≤ λ ≤ 3. The scale relation-
ships in Table 2.3 are plotted versus the separation, λ, over a wider range in Figs. 2-7 to 2-10.

It can be observed that by decreasing the dimensionless separation λ;

• The mean size of microcontacts in all models increases. The size of microcontacts in the
TH model increases continuously due to the assumed conical shape of asperities, while
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Table 2.3: Scale relationships for radius and number of microcontacts, and external force

Model a0s n0s F 0

GW [1]

s
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¡−λ2¢
erfc (λ)

−√πλ erfc(λ)
√
λ exp

µ
−λ

2
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¡
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¢
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4

µ
λ2
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¶
−
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4

µ
λ2

2

¶
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1

λ
λ exp
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λ
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Figure 2-7: Effect of mean separation on mean size of microcontacts
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Figure 2-9: Effect of mean separation on number of microcontacts
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Figure 2-10: Effect of mean separation on external force

the predicted mean microcontact size by GW and CMY approaches some limiting value.

• The real contact area increases and the trends predicted by the three models are very
similar, in the applicable range of the separation 1.5 ≤ λ ≤ 3.

• The external force also increases in a comparable manner in all three models. It is

interesting to observe that the external force is nearly proportional to the real contact

area in GWmodel, which indicates that the GW elastic model behaves like plastic models,

thus an elastic effective microhardness can be defined.

• The number of microcontacts increases in CMY and TH to a maximum, and falls by

further decreasing the separation, while the GW model does not show this phenomenon.

As the separation becomes smaller, more contacting spots form, also the mean size of the

existing microcontact increases, until they begin to merge and create larger contact spots

(clustering), which results in fewer microcontacts. Based on the microgeometry model,

a rough surface can be imagined as a collection of peaks and valleys. At the limit when

separation approaches zero, CMY and TH predict that all surface peaks (asperities higher

than the mean line) are cut off and only the ones under the mean line (valleys) remain.
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On the other hand, the GW model predicts that the peaks are elastically compressed to

the mean-line, without changing the shape of the rest of the surface profile.

This analysis may not be strictly correct, since these models were not designed to cover a

low range of separations and high deformations.

The real contact area plays the most important role in the prediction of the constric-

tion/spreading thermal resistance. The relationship between the applied load and the sepa-

ration is also important in the case where an interstitial gas is present. From the comparison, it

can be concluded that despite the different basic assumptions and input parameters in the GW

elastic and CMY and TH plastic models, their behavior in terms of real contact area, size and

number of microcontacts, and the relationship between the external force and real contact area

are comparable in the applicable range of the separation. In a manner similar to Greenwood

and Tripp [38] it therefore follows that the behavior of contacting rough surfaces is determined

essentially by surface statistical characteristics, which are the same in the compared models,

and the deformation mode of asperities is a second order effect. Additionally, a combination of

plastic and elastic modes would introduce no new features.

2.3.4 Non-Conforming Rough Surface Models

There are very few analytical models for the contact of non-conforming rough surfaces in the

literature. Greenwood and Tripp [38] performed the first in-depth analytical study of the effect

of roughness on the pressure distribution and deformation of contacting elastic spherical bodies.

The contacting rough surfaces were modeled as a smooth sphere and a rough flat. With the

same assumptions as GW, they derived a geometrical relationship relating the local separation

to the bulk deformation and the sphere profile. The elastic deformations produced by a normal

pressure distribution over an area of the surface can be calculated by superposition, using

the Boussinesq solution for a concentrated load on a half-space, and using the fact that the

displacement due to an axisymmetric pressure distribution will also be axisymmetric. The most

important trends in their model were that an increase in roughness resulted in a decrease in the

maximum axial contact pressure, P0, compared with the Hertzian pressure, P0,H , and enlarges

the effective macroscopic contact radius, aL, beyond the Hertzian contact radius.

Tsukada and Anno [49], with the same assumptions of Greenwood and Tripp [38], developed
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a model and offered expressions for pressure distribution as a function of non-dimensional

maximum pressure P0/P0,H and non-dimensional radius of macrocontact area aL/aH for rough

sphere-flat contact. Tsukada and Anno [49] and Sasajima and Tsukada [50] presented these

two parameters in graphical form for relatively small radii of curvature 5, 10, and 15 mm and

roughness in the range of 0.1 to 2 µm in discrete curves.

2.4 Thermal Analysis

The complex nature of the TCR problem dictates making simplifying assumptions in order

to develop thermophysical models. These complexities include the macro and micro scale

thermal constriction/spreading resistances, the random distribution of size, shape, and location

of microcontacts. Also the boundary condition of microcontacts, i.e., isothermal or isoflux,

is not known. Therefore, in addition to the geometrical and mechanical assumptions, most

existing thermal contact resistance models are based on the following common assumptions:

• contacting solids are isotropic, and thermal conductivity and physical parameters are
constant

• contacting solids are thick relative to the roughness or waviness

• surfaces are clean, and contact is static

• radiation heat transfer is negligible

• microcontacts are circular

• steady-state heat transfer at microcontacts

• microcontacts are isothermal; Cooper et al. [7] proved that all microcontacts must be at
the same temperature, provided the conductivity in each body is independent of direction,

position and temperature

• microcontact spots are flat; it is justifiable because surface asperities usually have a very
small slope [14].
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Thermal contact models have been constructed based on the premise that within the macro-

contact area a number of heat channels in the form of cylinders exist. The joint resistance

under vacuum conditions can be calculated by superposition of microscopic and macroscopic

resistances [4, 14, 22, 51, 5, 6]:

Rj = Rs +RL (2.21)

The real shapes of microcontacts can be a wide variety of singly connected areas depending on

the local profile of the contacting asperities. Yovanovich et al. [52] studied the steady-state

thermal constriction resistance of a singly connected planar contact of arbitrary shape. By using

an integral formulation and a semi-numerical integration process applicable to any shape, they

proposed a definition for thermal constriction resistance based on the square root of the contact

area. The square root of the contact area was found to be the characteristic dimension and a

non-dimensional constriction resistance based on the square root of area was proposed, which

varied by less than 5% for all shapes considered. Therefore, the real shape of the microcontacts

would be a second order effect and an equivalent circular contact, which has the same area, can

represent the microcontacts.

2.4.1 Thermal Constriction/Spreading Resistance

As mentioned in Chapter 1, thermal spreading resistance is defined as the difference between

the average temperature of the contact area and the average temperature of the heat sink, which

is located far from the contact area, divided by the total heat flow rate Q [3]; R = ∆T/Q.

If it is assumed that the micro contacts are very small compared with the distance separating

them from each other, the heat source on a half-space solution can be used [4]. Figure 2-11

illustrates the geometry of a circular heat source on a half-space. Classical steady-state solutions

are available for the circular source areas of radius a on the surface of a half-space of thermal

conductivity k, for two boundary conditions; isothermal and isoflux source. The spreading

resistance for isothermal and isoflux boundary conditions are Rs, isothermal = 1/ (4ka), and

Rs, isoflux = 8/
¡
3π2ka

¢
, respectively [3]. It can be seen that the difference between the spreading

resistance for isoflux and isothermal sources is only 8%, Rs, isoflux = 1.08Rs, isothermal.

As the microcontacts increase in number and grow in size, a constriction parameter, in-

dicated by ψ (·) , must be introduced to account for the interference between neighboring mi-
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Figure 2-11: Circular heat source on a half-space

crocontacts. Roess [53] analytically determined the constriction parameter for the heat flow

through a flux tube. Figure 2-12 illustrates the geometry of two flux tubes in a series. An

equivalent long cylinder of radius, b, is associated with each microcontact of radius a. The

total area of these flux tubes is equal to the interface apparent area. The constriction

and spreading resistances are identical and in series, because of the geometrical symmetry,

ψspreading = ψconstriction = ψ. Roess [53] suggested an expression in the form of

Rtwo flux tubes =
ψ (ε)

4k1a
+

ψ (ε)

4k2a
=

ψ (ε)

2ksa
(2.22)

where, ks = 2k1k2/ (k1 + k2) is the harmonic mean of the thermal conductivities, and ε = a/b.

To overcome the mixed boundary value problem, Roess replaced the temperature boundary

condition by a heat flux distribution proportional to
h
1− (r/a)2

i−1/2
over the source 0 ≤ r ≤ a,

and adiabatic outside the source a < r ≤ b. Roess presented his results in the form of a series.

Mikic and Rohsenow [14], using a superposition method, derived an expression for the thermal

contact resistance for half of an elemental heat channel (semi-infinite cylinder), with isothermal

boundary condition. They found another solution for mixed boundary condition of the flux

tube, by using a procedure similar to Roess [53]. They also studied thermal contact resistance

of the flux tube with a finite length. It was shown that the influence of the finite length of

the elemental heat channel on the contact resistance was negligible for all values of l ≥ b ,

where l is the length of the flux tube. Later this expression was simplified by Cooper et al.
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Table 2.4: Thermal spreading resistance factor correlations, isothermal contact area

Reference Correlation

Roess [53]
1− 1.4093ε+ 0.2959ε3 + 0.0525ε5 + 0.021041ε7
+0.0111ε9 + 0.0063ε11

Mikic-Rohsenow [14] 1− 4ε/π
Cooper et al. [7] (1− ε)1.5

Gibson [55] 1− 1.4092ε+ 0.3381ε3 + 0.0679ε5
Negus-Yovanovich [56] 1− 1.4098ε+ 0.3441ε3 + 0.0431ε5 + 0.0227ε7

[7], see Table 2.4. Yovanovich [54] generalized the solution to include the case of uniform heat

flux, and arbitrary heat flux over the microcontact. A number of correlations for isothermal

spreading resistance for the flux tube are listed in Table 2.4. Figure 2-13 shows the comparison

between these correlations. It is observed that at the limit when ε→ 0, the flux tube spreading

resistance factor approaches one, which is the case of a heat source on a half-space. Also

the results from all these various correlations for spreading resistance factor show very good

agreement for the range 0 ≤ ε ≤ 0.3, which is typically the range of interest in thermal contact
resistance applications.
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Figure 2-13: Comparison between thermal spreading resistance correlations, isothermal contact
area

2.4.2 TCR Models for Conforming Rough Surfaces

During the last four decades, many experiments have been conducted and several correlations

proposed for nominally flat rough surfaces. Madhusudana and Fletcher [57], and Sridhar and

Yovanovich [58] reviewed existing conforming rough models. Here only a few models will be

reviewed, in particular those that are going to be compared with experimental data.

Cooper et al. [7] developed an analytical model, with the same assumptions that were

discussed at the beginning of this section, for contact of flat rough surfaces in a vacuum.

Eq.(2.15) shows the mean size and number of microcontacts and Eq.(2.16) presents the ratio

of real area to the apparent area. The remaining relations of the Cooper et al. [7] model is

Rc =
4
√
π

Aa
√
2ks

³ σ
m

´ h1−q1
2erfc (λ)

i1.5
exp

¡−λ2¢ (2.23)

where Rc, λ =erfc−1 (2Pm/Hmic) , and ks are thermal contact resistance, dimensionless sepa-

ration, and harmonic mean of thermal conductivities, respectively. Yovanovich [8] suggested
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a correlation based on the Cooper et al. [7] model, which is quite accurate for optically flat

surfaces

Rc =
(σ/m)

1.25Aaks (P/Hc)
0.95 (2.24)

2.4.3 TCR Models for Non-Conforming Rough Surfaces

Clausing and Chao [4] were the first to experimentally study the contact of rough non-flat

surfaces. They also developed a model, with the same assumptions that were discussed at

the beginning of this section, for determining the thermal joint (macroscopic and microscopic)

resistance for rough, spherical surfaces in contact under vacuum conditions. Their geometrical

contact model is shown in Fig. 2-14, the effective radius of curvature of the contacting surfaces

was found from Eq.(2.8). Using Roess [53] correlation, see Table 2.4, Clausing and Chao

found the total micro thermal resistance of identical, circular, isothermal microcontacts in the

macrocontact area

Rs =
ψ (εs)

2ksasns
(2.25)

The microscopic portion of the Clausing and Chao model was based on the plastic deformation

of asperities; a measured diamond pyramid hardness was used to consider the asperity hard-

ness of the contacting surfaces. However, material microhardness was multiplied by, ξhardness,

an empirical correction factor introduced by Holm [33], to account for the effects of elastic

deformation of asperities. The real contact area Ar, then was calculated

Ar =
F

ξhardnessHmic
= nsπa

2
s (2.26)

Additionally the following simplifications were made to enable an estimation of the microscopic

constriction resistance:

• the microscopic contact spots were assumed to be identical and uniformly distributed, in
a triangular array, over the macrocontact area, see Fig. 2-14

• the average size of the microcontacts as was independent of load and it was of the same
order of magnitude as the surface roughness, i.e. as ≡ σ.
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Figure 2-14: Clausing and Chao 1965 geometrical model

They did not report the exact relationship between the microcontact radius and the rough-

ness. In this study, it is assumed, as = σ. They assumed an average value of ξhardness = 0.3

to take into account both plastic and elastic deformation of microcontacts. Also, a value of

ψ (εs) = 1 was assumed, which means microcontacts were considered as isothermal circular

heat sources on a half-space [59], additionally they assumed, ξhardnessπ = 1. With the above

assumptions the microscopic thermal resistance became

Rs =
σHmic
2ksF

(2.27)

Neglecting the effect of roughness on the macrocontact area, Clausing and Chao determined

the radius of the macrocontact area from the Hertzian theory, Eq. (2.13), i.e., aL = aH . They

reported aL for elastic contact of spheres in the following form:

εL =
aH
bL

= 1.285

·µ
P

Em

¶µ
bL
δ

¶¸1/3
(2.28)
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where Em = 2E1E2/ (E1 +E2), δ = δ1+ δ2, and it was assumed that υ21 = υ22 = 0.1. Therefore,

the thermal joint resistance, based on the Clausing and Chao model, became

Rj =
σHmic
2ksF

+
ψ (εL)

2ksaH
(2.29)

where ψ (·) is the Roess [53] spreading factor, see Table 2.4. Clausing and Chao verified their
model against experimental data and showed good agreement. Their model was suitable for

contacts in which the macroscopic constriction resistance was much greater than the microscopic

resistance.

Kitscha [60] and Fisher [61] developed models similar to the Clausing and Chao’s model and

experimentally verified their models for relatively small radii of curvature and different levels of

roughness. Burde [51] derived expressions for size distribution, and number of microcontacts,

which described the increase in the macroscopic contact radius for increasing roughness. His

model showed good agreement with experimental data for spherical specimens with relatively

small radii of curvature with different levels of roughness. Burde did not verify his model or

perform experiments for surfaces approaching nominally flat. Also, results of his model were

reported in the form of many plots, which are not convenient to use.

Mikic and Rohsenow [14] studied thermal contact resistance for various types of surface

waviness and conditions. In particular; nominally flat rough surface in a vacuum, nominally

flat rough surfaces in a fluid environment, smooth wavy surfaces in a vacuum environment

with either of the following three types of waviness involved: spherical, cylindrical in one

direction, and cylindrical in two perpendicular direction, and rough spherical wavy surfaces in

a vacuum. Thermal contact resistance for two spherical wavy rough surfaces was considered as

the summation of a micro and a macro thermal constriction resistance given by

Rj =
ψ (aL,eff/bL)

2ksaL,eff
+

ψ (εs)

2ksasns
(2.30)

where ψ (·) is the Mikic and Rohsenow [14] spreading factor, see Table 2.4. Similar to Clausing
and Chao [4], the effective radius of curvature of the contacting surfaces was found from Eq.

(2.8). The macrocontact area for smooth surfaces was determined by the Hertzian theory, Eq.

(2.13). Mikic and Rohsenow derived expressions for the mean size and number of microcontacts
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by assuming fully plastic deformation of asperities and equivalent surface approximation. These

relationships were used later by Cooper et al. [7]. Their model was based on the uniform

distribution of identical microcontacts inside the macrocontact area. In the case of rough

surface contacts, knowing that the macrocontact area would be larger than the one predicted

by the Hertzian theory, they defined an effective macrocontact area. This area contained all

the microcontact spots as if they had been uniformly distributed. Using this definition and

the assumption that the mean surface would deform elastically, they suggested an iterative

procedure for calculating the macrocontact radius. Mikic and Rohsenow verified their model

against three sets of experiments. Their computed ratios of macrocontact radius to Hertzian

macrocontact radius were 1.6, 1.6, and 1.77 for each experiment and were considered constant

throughout the tests, as the external load increased. Mikic and Rohsenow did not derive the

actual continuously varying pressure distribution for the contact of spherical rough surfaces.

Additionally their expressions for effective macrocontact radius were very complex, and the

iterative solution was quite tedious.

Later Mikic [62] derived expressions, based on the Mikic and Rohsenow [14] plastic model,

for macroscopic and microscopic thermal resistances in a vacuum, which related the micro and

macro thermal resistances to arbitrary pressure distribution and surface properties. The derived

relations were general in the sense that they did not require the knowledge of the effective

macrocontact area and they could be applied for any symmetrical cylindrical or Cartesian

pressure distribution at an interface.

Lambert [23] studied the thermal contact resistance of two rough spheres in a vacuum. He

started with the Greenwood and Tripp [38] elastic model for mechanical analysis, and Mikic [62]

thermal model as the basis for his thermal analysis. Lambert [23] was not able to solve the set of

the mechanical relationships numerically, and mentioned that “the Greenwood and Tripp model

is under-constrained, and convergence may be achieved for the physically impossible cases”.

To obtain numerical convergence, Lambert implemented results for the dimensionless axial

minimum mean plane, reported by Tsukada and Anno [49], in the mechanical part of his model.

The procedure for applying the Lambert [23] model, presented in appendix-A of his thesis, was

used to calculate TCR in this study. He suggested two 7th order polynomial expressions for

pressure distribution and radius of macrocontact area as a function of a dimensionless load.
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Lambert also introduced three dimensionless correction functions in the form of logarithmic

polynomials in his thermal model, without specifying the origin and reasons for their presence.

His approximate procedure was quite long and required computer-programming skills to apply

it. Also, logarithmic expressions for dimensionless macrocontact radius, aL/aH , showed a

discontinuity, which caused a strange behavior in the predicted thermal joint resistance, see

Figs. 2-15 and 2-16. Lambert collected and summarized experimental data reported by many

researchers and compared his model with experimental data. He showed a good agreement with

experimental data.

Nishino et al. [5] studied the contact resistance of spherical rough surfaces in a vacuum under

low applied load. Macroscopic and microscopic thermal contact resistance was calculated based

on the Mikic [62] thermal model. Nishino et al. [5] used a pressure measuring colored film

that provided information, by means of digital image processing, about the contact pressure

distribution. They also verified their method experimentally with aluminum alloy specimens,

the experimental data showed good agreement with their technique. They concluded that the

macroscopic constriction resistance was predominant under the condition of low applied load.

However, the Nishino et al. model required measurements with pressure sensitive film and

they did not suggest a general relationship between contact pressure and surface profile and

characteristics.

2.5 Comparison Between TCR Models and Data

The developed theoretical models by Clausing and Chao [4] Eq. (2.29), Yovanovich [8] Eq.

(2.24), and Lambert [23] are compared with experimental data. References, material and ther-

mophysical properties, and surface characteristics of the experimental data are summarized in

Appendix A. As indicated in Table 2.5, the experimental data cover a relatively wide range of

the experimental parameters. Table 2.7 indicates the researchers and the specimen materials

used in the experiments.

The comparison is done at two extremes; conforming rough surfaces where the macro resis-

tance is negligible and elastoconstriction limit where contacting surfaces have relatively small

radii of curvature and the micro resistance is almost negligible.
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Table 2.5: Parameter ranges for experimental data

Parameters
57.3 ≤ E0 ≤ 114.0 GPa
16.6 ≤ ks ≤ 75.8 W/mK
0.12 ≤ σ ≤ 13.94 µm
0.04 ≤ m ≤ 0.34
0.013 ≤ ρ ≤ 120 m

Table 2.6: Physical properties and surface characteristics of comparison base surface

σ = 1.3 µm m = 0.073 Hmic = 3.92 GPa

bL = 7.15 mm E0 = 114 GPa ks = 40.7 W/mK

TCR for the above models was calculated for a base typical rough surface, the physical

properties and surface characteristics are shown in Table 2.6. Surface curvatures ρ = 14.3

mm, and ρ = 100 m were chosen for elastoconstriction and conforming rough limits, respec-

tively. Experimental data collected by Kitscha [60], Fisher [61], and Burde [51] were compared

with the theoretical models in Fig. 2-15. The elastoconstriction approximation introduced by

Yovanovich [63], which accounts only for macro resistance predicted by Hertzian theory and

neglects the micro thermal resistance completely, was also included in the comparison. The elas-

toconstriction approximation was included to clearly demonstrate that the macro resistance is

the dominating part of thermal joint resistance in the elastoconstriction limit, and the micro

thermal resistance is negligible. As can be seen in Fig. 2-15, the elastoconstriction approxima-

tion and the Clausing and Chao [4] model are very close and show good agreement with the

data. The Lambert [23] model, as a result of its expression for macrocontact radius aL, showed

a strange behavior. As expected, Yovanovich [8] model, which was developed for conforming

rough surfaces, does not agree with the data.

Experimental data collected by Antonetti [64], Hegazy [25], and Milanez et al. [65] were

compared with the theoretical models in Fig. 2-16. As shown, the Yovanovich [8] model showed

good agreement with the data. Lambert [23] was very close to Yovanovich [8] in most of the

comparison range, however the strange behavior in the predicted macrocontact area showed up

as can be seen in the plot. The Clausing and Chao [4] model under predicted thermal resistance

in the conforming rough region.
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Figure 2-15: Comparison of existing models with data at the elastoconstriction limit
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Figure 2-16: Comparison of existing models with data at the conforming rough limit

Kitscha [60], and Fisher [61] did not report the surface slope, m; the Lambert and Fletcher

[6] correlation was used to estimate these values, see Table 2.1. The exact values of radii of

curvature for conforming rough surfaces were not reported. Since, these surfaces were prepared

to be optically flat, radii of curvature in the order of ρ ≈ 100 (m) are considered for these

surfaces. Table 2.7 indicates the researchers and the specimen materials used in the experiments.

2.6 Summary and Conclusions

Thermal contact resistance modeling and its components were studied. The modeling process

was divided into three analyses: geometrical, mechanical, and thermal where each one included

a macro and micro scale part.
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Table 2.7: Reseacher and specimen materials

Ref. Researcher Specimen Material(s)
A Antonetti [64] Ni 200
B Burde [51] SPS 245, Carbon Steel
F Fisher [61] Ni 200, Carbon Steel

H Hegazy [25]


Ni 200
SS 304
Zircaloy4
Zr-2.5%wt Nb

K Kitscha [60] Steel 1020,Carbon Steel
M Milanez et al. [65] SS 304

Proposed empirical correlations to relate surface slopes, m, to surface roughness σ, were

summarized and compared with experimental data. The comparison showed that the uncer-

tainty of the correlations was high; use of these correlations is not recommended unless only an

estimation of m is required.

GW [1] elastic, CMY [7] and TH [35, 36] plastic conforming rough models were reviewed and

a set of scale relationships were derived for the contact parameters, i.e., the mean microcontact

size, number of microcontacts, density of the microcontacts, and the external load as functions

of dimensionless separation. These scale relationships were compared and it was graphically

shown that despite the different assumptions and input parameters, their behaviors in terms of

the contact parameters were similar. It can be concluded from the comparison that the behavior

of contacting rough surfaces is determined essentially by surface statistical characteristics. Also

a combination of plastic and elastic modes would introduce no new features.

The common assumptions of the existing thermal analyses were summarized. Suggested

correlations by different researchers for the flux tube spreading resistance were compared. It

was observed that, at the limit, the correlations approached the heat source on a half-space

solution. Also all the spreading resistance correlations showed good agreement for the applicable

range.

Experimental data points obtained for five materials, namely SS 304, carbon steel, nickel

200, zirconium-2.5% niobium, and Zircaloy-4, were summarized and grouped into two limiting

cases: conforming rough, and elastoconstriction. These data were non-dimensionalized and

compared with TCR models at the two limiting cases. It was shown that none of the existing
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theoretical models covers both of the above-mentioned limiting cases.

This clearly shows the need to develop theoretical model(s) which can predict TCR over

all cases including the above mentioned limiting cases and the transition range where both

roughness and out-of-flatness are present and their effects on contact resistance are of the same

order.
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Chapter 3

Mechanical Analysis

3.1 Introduction

An accurate knowledge of contact mechanics, i.e., pressure distribution, size of the macrocontact

area, and the separation between the mean planes as functions of applied load, geometrical

and mechanical characteristics/properties of the contacting bodies, plays an important role

in predicting and analyzing thermal and electrical contact resistance and many tribological

phenomena.

The contact of two spherical rough surfaces includes two problems with different scales, i)

the bulk or macro scale problem, i.e., bulk elastic compression which can be calculated using

Hertz [29] theory for ideal smooth mean profiles of two surfaces, and ii) the small or micro

scale problem, i.e., deformation of surface asperities. The scales of the sub-problems (macro

and micro) are very different, yet at the same time, strongly interconnected. Due to surface

roughness, contact between two surfaces occurs only at discrete microscopic contacts and the

real area of contact, the total area of these microcontacts, is typically a small fraction of the

nominal contact area [2, 1].

The macrocontact area is defined as the area in which the microcontacts are distributed,

also the contact pressure falls to a negligible value at the edge of the macrocontact. The surface

asperities act like a compliant layer on the surface of the contacting bodies, so that the contact

is extended over a larger apparent area than it would be if the surfaces were smooth, and

consequently, the contact pressure for a given load will be reduced [20].
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In this Chapter, an analytical model is developed that enables one to predict the contact

parameters such as pressure distribution and size of the macrocontact area. It is required to find

simple correlations for determining the above contact parameters that can be used in analytical

thermal contact models. Also a criterion is proposed to specify a flat surface where the surface

curvature can be neglected.

3.2 Theoretical Background

As previously mentioned, the spherical rough contact mechanics problem is divided into macro

and micro sub-problems. The macro problem is the contact of two spherical bodies, which

is assumed to be within the elastic limit, while the micro or the deformation of the surface

asperities is assumed to be plastic.

3.2.1 Microcontact Modeling

The solution of any contact mechanics problem requires that the geometry of the intersection

and overlap of the two undeformed surfaces be known as a function of their relative position. If

the asperities of a surface are isotropic and randomly distributed over the surface, the surface is

called Gaussian. Williamson et al. [16] have shown experimentally that many of the techniques

used to produce engineering surfaces give a Gaussian distribution of surface heights. Many

researchers, including Greenwood and Williamson [1] assumed that the contact between two

Gaussian rough surfaces can be simplified to the contact between a single Gaussian surface,

having the effective (sum) surface characteristics, placed in contact with a perfectly smooth

surface, as shown in Fig. 2-2. The equivalent roughness, σ, and surface slope, m, can be found

from

σ =
q
σ21 + σ22 and m =

q
m21 +m

2
2 (3.1)

As discussed in Chapter 2, existing microcontact mechanical models can be categorized into

three main groups: elastic, plastic, and elastoplastic based on the deformation mode of asperi-

ties. By comparing the elastic model of Greenwood and Williamson [1] and the plastic model

of Cooper et al. [7] for nominal flat contacts, it was shown in Chapter 2 that the behavior of

the above models are similar, despite the different assumed deformation mode of asperities. It
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was also concluded that in most real contacts, asperities deform plastically except for special

cases where the surfaces are extremely smooth, see section 2.3.3 for more detail.

The present model is developed assuming the asperities deform plastically. Plastic models

assume that the asperities are flattened during contact. This is the same as assuming that

the asperities penetrate into the smooth surface in the equivalent model, without any change

in shape of the parts of the equivalent rough surface not yet in contact. Therefore, bringing

two rough surfaces together within a distance, Y, is equivalent to removing the top of the as-

perities at a height Y above the mean plane. The assumption of pure plastic microcontacts

enables the micro mechanics to be specified completely by the mean slope m and the surfaces

roughness σ, without having to assume some deterministic peak shapes, as with elastic micro-

contact models. Cooper et al. [7] derived the following relationships for contact of nominal flat

rough surfaces, assuming plastically deformed asperities, whose height and surface slopes have

Gaussian distributions, where the mean separation Y is constant throughout the contact plane

as =

r
8

π

³ σ
m

´
exp

¡
λ2
¢
erfc λ

ns =
1

16

³m
σ

´2 exp ¡−2λ2¢
erfc λ

Aa

Ar
Aa

=
1

2
erfc λ


(3.2)

where λ = Y/
√
2σ, ns, as, Ar and Aa are the dimensionless mean plane separation, number

and average size of microcontacts, the real and the apparent contact area, respectively.

3.2.2 Microhardness

As mentioned in Chapter 2, microhardness is not a constant of materials. Hegazy [25] demon-

strated through experiments with four alloys that the effective microhardness is significantly

greater than the bulk hardness. Microhardness decreases with increasing depth of the indenter

until bulk hardness is obtained. He derived empirical correlations to account for the decrease

in contact microhardness of the softer surface with increasing depth of penetration of asperities

on the harder surface:

Hv = c1
¡
d0v
¢c2 (3.3)
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where Hv is the Vickers microhardness in GPa, d0v = dv/d0 and d0 = 1 µm, dv is the Vickers

indentation diagonal in µm, and c1 and c2 are correlation coefficients determined from the

Vickers microhardness measurements.

3.2.3 Macrocontact Modeling

According to Johnson [20] in static frictionless contact of solids, the contact stresses depend

only on the relative profile of the two surfaces, i.e., upon the shape of the interstitial gap

before loading. Hertz [29] replaced the two spheres contact geometry by a flat surface and a

profile which results in the same undeformed gap between the surfaces. Additionally, all elastic

deformations can be considered to occur in one body, which has an effective elastic modulus,

E0, and the other body is assumed to be rigid. The effective elastic modulus can be found from

1

E0
=
1− υ21
E1

+
1− υ22
E2

(3.4)

where E and υ are the Young’s modulus and Poisson’s ratio, respectively. For the contact of

two spheres, the effective radius of curvature is

1

ρ
=
1

ρ1
+
1

ρ2
(3.5)

As a result of these assumptions and by considering axisymmetric loading, we can simplify

the complex geometry of two spherical rough surfaces to a rigid smooth sphere having the

equivalent radius of curvature in contact with a rough flat surface which has the equivalent

surface characteristics, Fig. 3-1.

The open literature contains very few analytical mechanical models for the contact of spher-

ical rough surfaces, see Chapter 2. The first in-depth analytical study to investigate the effect

of roughness on the pressure distribution and deformation of contacting elastic spherical bodies

was performed by Greenwood and Tripp (GT) [38]. Greenwood and Tripp model was devel-

oped based on the same assumptions as the Greenwood and Williamson [1] nominal flat rough

contact model. Their assumptions can be summarized as follows:

• contact is axisymmetric and the bulk deformation is elastic
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Figure 3-1: Equivalent contact geometry of two spherical rough surfaces

• rough surfaces are isotropic with Gaussian height distribution and a standard deviation,
σ

• the distribution of summit heights is the same as the surface heights standard deviation,
i.e., σs = σ

• the deformation of each asperity is independent of its neighbors

• the asperity summits have a spherical shape all with a constant radius, β, the asperities
entirely deform within the elastic limit and Hertz [29] theory can be applied for each

individual summit.

They derived a geometrical relationship relating the local separation to the bulk deformation

and the sphere profile. The elastic deformations produced by a pressure distribution over an

area of the surface can be calculated by superposition, using the Boussinesq solution for a

concentrated load on a half-space, and the fact that the displacement due to an axisymmetric

pressure distribution is also axisymmetric. It can be shown that the normal displacement in a
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half-space due to an arbitrary pressure distribution can be found from [66]

ωb (r) =



2

E0

Z ∞

0
P (s) ds r = 0

4

πE0r

Z r

0
sP (s)K

³s
r

´
ds r > s

4

πE0

Z ∞

r
P (s)K

³r
s

´
ds r < s

(3.6)

where ωb (r) is the local bulk deformation, K (·) is the complete elliptic integral of the first
kind, and s is a dummy variable. Greenwood and Tripp [38] used Eq. (3.6), which gave a

complementary relation between local separation and the pressure. They reported a complete

set of relationships and solved it numerically.

The results of the GT analysis were found to be primarily a function of a non-dimensional

parameter T = 2F/σE0
√
2ρσ and a weak function of µ = 8ση

√
2ρβ/3. The most important

trends in the GT model were that an increase in roughness resulted in a decrease in the pressure

and an increase in the contact area. The GT model was a significant achievement, however its

limitations are

• the GT model was presented as a set of relationships; applying the model is complex and
requires numerically intensive solutions

• two of its input parameters, i.e., summits radius β and density η cannot be measured

directly and must be estimated through statistical calculations. Additionally, these para-

meters are sensitive to the surface measurements [20, 47].

Roca and Mikic [67] developed an alternative numerical model by assuming plastic defor-

mation of asperities and that the height of the surface roughness has a Gaussian distribution.

Similar trends to those of the GT model were presented. The modeling results of [67] were also

mainly a function of a non-dimensional parameter σ = πσE0/aHP0,H and a weak function of

H/P0,H , where P0,H is the maximum pressure in the Hertzian limit. Mikic and Roca did not

report general relations to calculate the contact parameters.

Greenwood et al. [68] introduced a non-dimensional parameter α called roughness parameter
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that governs primarily the rough spherical contact as

α =
σ

ω0,H
≡ σρ

a2H
= σ

µ
16ρE02

9F 2

¶1/3
(3.7)

Greenwood et al. [68] showed that the controlling non-dimensional parameters in both [38] and

[67] models can be written in terms of α, i.e., T = 4
√
2/3
√
α3 and σ = 3π2α/4, respectively.

They concluded that it is unimportant whether the asperities deform elastically or plastically;

the contact pressure is predominantly governed by α. Further, if the value of α is less than 0.05,

the effect of roughness is negligible and the Hertzian theory can be used.

3.3 Present Model

The micro mechanical analysis of the present model is developed on the basis of the Cooper et

al. [7] plastic model. The macrocontact area is divided into infinitesimal conforming surface

elements where the conforming rough surface relationships, i.e., Eqs. (3.2) can be applied.

Bulk deformations are related to the local separation of the contacting surfaces, through a

geometrical relationship similar to Greenwood and Tripp [38]. The assumptions of the present

model can be summarized as:

• contacting surfaces are macroscopically spherical, which are considered as a sphere-flat
contact, Fig. 3-1

• microscopically, contacting surfaces are rough and isotropic with a Gaussian asperity
distribution. Only one surface is taken to be rough while the equivalent roughness is

assumed to be on the flat plane and the sphere is assumed to be smooth

• microcontacts deform plastically and the asperity pressure is the local microhardness of

the softer material in contact. Reasons supporting this assumption are discussed in section

2.3.3

• deformation of each asperity is independent of its neighbors

• only the first loading cycle is considered
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Figure 3-2: Contact geometry after loading

• the load is axisymmetric and the contact is frictionless, i.e., there are no tangential forces
in the contact area

• the macrocontact is elastic where the elasticity theory given in Eq. (3.6) is employed to
determine the substrate deformation

• the contact is static, i.e., there is no relative motion or vibration effect.

In the vicinity of the contact region the profile of the sphere can be written as

u (r) = u0 − r2/2ρ (3.8)

Figure 3-2 shows the contact geometry after applying the load. The local separation, Y (r), is

defined as the distance between two mean planes of the contacting surfaces and can be written

as

Y (r) = ωb (r)− u (r) = ωb (r)− u0 + r2/2ρ (3.9)

At each microcontact a discrete point force is created as illustrated in Fig. 3-3. The sum of these

discrete point forces must be equal to the external force, F. It is assumed that the asperities of
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Figure 3-3: Discrete point forces and the equivalent pressure distribution on the plastic zone

the rough surface behave like a plastic zone on an elastic half-space, in the sense that the effect

of the discrete point forces on the elastic half-space is considered as an equivalent continuous

pressure distribution, P (r). It should be noted that all bulk deformations are assumed to occur

in the elastic half space which has an effective elasticity modulus E0 and the sphere is assumed

to be rigid. Consider an infinitesimal surface element, dr → 0 where Fig. 3-2 shows a magnified

element in which the local separation, Y (r), is uniform. The ratio of real to apparent area for

a surface element can be found from Eq. (3.2)

dAr (r)

dAa (r)
=
1

2
erfc λ (r) (3.10)

where dAa (r) = 2πrdr. As a result of surface curvature, the mean local separation and conse-

quently the mean size of the microcontacts vary with radial position. The local microhardness

can be determined from the Vickers microhardness correlation, Eq. (3.3) as a function of the

local mean microcontact radius. The relation between the Vickers diagonal dv and the micro-

contact radius as, based on equal areas, is: dv =
√
2πas. Therefore, the local microhardness

is

Hmic (r) = c1

h√
2πas (r)

ic2
(3.11)
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where the local radius of the microcontacts can be found from Eq. (3.2)

as (r) =

r
8

π

³ σ
m

´
exp

£
λ2 (r)

¤
erfc λ (r) (3.12)

The external load F is the summation of the point forces at the microcontacts

F =
nsX
i

fi =
ZZ

contact area

Hmic (r) dAr (r) (3.13)

Substituting Eq. (3.10) into Eq. (3.13)

F = π

Z ∞

0
Hmic (r) erfc λ (r) rdr (3.14)

Instead of aL, the upper limit of the integral is set to infinity, since the macrocontact radius is

not known and the effective pressure distribution rapidly approaches zero. On the bulk side,

the equivalent pressure must satisfy the force balance

F = 2π

Z ∞

0
P (r) rdr (3.15)

The equivalent pressure distribution on the elastic half-space can be found from Eqs. (3.14)

and (4.14)

P (r) =
1

2
Hmic (r) erfc λ (r) (3.16)

With the pressure distribution, one can find the normal displacement of the bulk from Eq.

(3.6). Equations (3.6), (3.9), (3.11), (3.12), (3.15), and (3.16) form a closed set of governing

relationships. A computer program was developed to solve the set numerically.

No exact definition exists for the macrocontact radius in the literature. In this study, it is

assumed to be the radius where the normalized pressure is negligible, i.e., P (r = aL) /P0 < 0.01.

Numerical Solution

The following procedure, Fig. 3-4, is used to solve the above-mentioned governing relationships.

A value of u0,1 is assumed, thus pressure distribution can be computed. P (r) is then used to
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Figure 3-4: Numerical algorithm, the main loop

calculate an improved ωb (r).

This improved ωb (r) now is used to calculate a new pressure distribution Pnew (r) and so

on until P (r) converges. The algorithm of the above procedure is shown in Fig. 3-5, the inner

loop flow chart.

The pressure distribution P (r) is integrated over the macrocontact area and Fcal is calcu-

lated. The calculated force Fcal is compared with the actual external load F and the relative

force error F ∗1 is determined

F ∗ =
F − Fcal
F

(3.17)

Another u0, u0,2, is guessed and all the above-mentioned steps are repeated for u0,2 to compute

56



Calculate P(r)

Calculate 

Calculate P   (r)

                  u
from Main Loop
             

End

Not acceptable

Acceptable

|P    (r) - P(r)|
P   (r)

:TOL.

 P(r) = P    (r) 

0

ω ω ω

new

new

b,new

new

b b,new

new

=(r) (r) (r)

Figure 3-5: Pressure-displacement iteration procedure, the inner loop

u0,1u0,2

F1

F2

*

*

point 1

point 2

u0,new

Line passing 
through points 1, 2

re
la

tiv
e 

fo
rc

e 
er

ro
r

bulk deformation at center 

Figure 3-6: Successive iterative method to estimate u0,new

57



r / a H

P
/P

0,
H

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

a L

Hertz

Model

Figure 3-7: Pressure distribution

F ∗2 . A line can be fitted to these two points (u0,1, F ∗1 ) and (u0,2, F ∗2 )

F ∗ =
F ∗2 − F ∗1
u0,2 − u0,1u0 +

u0,2F
∗
1 − u0,1F ∗2

u0,2 − u0,1 (3.18)

It should be noted that when the convergence is achieved the relative force error is zero (a

negligible value), i.e., Fcal = F. we can calculate u0,new by setting F ∗ = 0 in Eq. (3.18)

u0,new =
F ∗1 u0,2 − F ∗2 u0,1

F ∗1 − F ∗2
(3.19)

Then the relative force error F ∗new can be calculated through the inner loop procedure. Figure 3-

6 shows the linear interpolation method used to determine a new value for u0,new. If F ∗new is not

within the acceptable tolerance, u0 and F ∗ are updated and the iterative pressure-displacement

calculation procedure is repeated until the convergence is achieved. To make the numerical

convergence faster, we used a secant method to update u0 and F ∗, see Fig. 3-4. The loop is

continued until the integrated pressure and external load are within an acceptable tolerance.
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Table 3.1: Input parameters for a typical contact

ρ = 25 mm F = 50 N
σ = 1.41 µm E0 = 112.1 GPa
m = 0.107 c1/c2 = 6.27 GPa/− 0.15

r / a H

a s
(µ

m
)

0 1 2 30

2

4

6

8

10

12

a L

Figure 3-8: Mean microcontacts radius

3.4 Numerical Results

A simulation procedure was run to construct the results shown in Figs. 3-7 to 3-10, based on

the algorithms described in the previous section and by using input data shown in Table 3.1.

Contact of a SS sphere-flat with an equivalent radius of curvature of 25 mm, equivalent surface

roughness of 1.41 µm, and an applied load of 50 N was chosen as an example.

Figure 3-7 shows the pressure distribution predicted by the present model and the Hertzian

pressure. It can be seen that due to the presence of roughness the maximum contact pressure

compared to the Hertzian contact pressure, is reduced and the load is spread over a greater

area. Figure 3-7 also shows the predicted macrocontact radius aL and that the effective pres-

sure distribution, unlike the Hertzian pressure distribution, falls asymptotically to zero. As

expected, the mean radius of microcontacts as, and microcontacts density ηs, decrease as the
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Figure 3-9: Density of microcontacts

radial position r increases. It can be seen in Fig. 3.8 that the mean size of the microcontacts

is not zero beyond the predicted macrocontact radius aL. However as shown in Fig. 3.9 the

density of microcontacts is very small for r > aL, thus the real contact is very small. There-

fore, the contribution of the microcontacts beyond aL to the force balance is negligible. The

microhardness profile is shown in Fig. 3-10.

To investigate the effect of roughness on the pressure distribution, the program was run for

a wide range of roughness from 0.02 to 14.4 µm while all other parameters in Table 3.1 were

held constant. Figure 3-11 illustrates the effect of roughness on the pressure distribution. It can

be seen that the effective pressure distribution approaches the Hertzian pressure distribution

as the roughness decreases.

3.5 Approximate Model

The main goal of this study is to develop simple correlations for determining the effective pres-

sure distribution and the macrocontact radius as functions of non-dimensional parameters that
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Figure 3-11: Effect of surface roughness on contact pressure distribution
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Figure 3-12: Non-dimensional pressure distribution for spherical rough contacts

describe the contact problem. To develop an approximate solution, the following simplifications

are made:

• an effective microhardness Hmic that is constant throughout the contact region is consid-
ered

• the surface slope m is assumed to be a function of surface roughness, σ.

In this section, it is demonstrated that a general pressure distribution as a function of the

maximum contact pressure exists. Then, the number of governing non-dimensional parameters

is determined using a dimensional analysis. Finally simple correlations for the maximum contact

pressure and the macro contact radius are proposed.

Figure 3-12 illustrates non-dimensional pressure distributions for some values of P 00 =

P0/P0,H as a function of non-dimensional radial location ξ = r/aL. It was observed that the

non-dimensional pressure distribution can be specified as a function of the dimensionless max-

imum pressure P 00, and the radial position, ξ. In other words, a general profile exists that

presents all possible pressure distributions.
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The Hertzian pressure distribution [29] where the contacting surfaces are perfectly smooth

is

PH (r/aH) = P0,H

q
1− (r/aH)2 (3.20)

where

P0,H =
3F

2πa2H
and aH =

µ
3Fρ

4E0

¶1/3
The profile of the pressure distribution, especially in the contacts where the non-dimensional

maximum pressure is less than 0.6, is very similar to a normal (Gaussian) distribution. However,

as the non-dimensional maximum pressure approaches one (the Hertzian contact) the pressure

distribution begins to deviate from the normal distribution profile.

After considerable investigation, the general profile for the pressure distribution for spherical

rough surface contact was found to be

P (ξ) = P0
¡
1− ξ2

¢γ
(3.21)

where ξ = r/aL, and γ can be calculated through a force balance

F = 2π

Z aL

0
P (r) rdr (3.22)

Substituting Eq. (3.21) into (3.22), after evaluating the integral, one finds

γ = 1.5P 00
¡
a0L
¢2 − 1 (3.23)

where P 00 = P0/P0,H , and a0L = aL/aH .

Using a force balance and Eq. (3.21), one can find a relationship between the maximum

contact pressure P0 and the applied force F as

P0 = (1 + γ)
F

πa2L
(3.24)

At the limit, where roughness approaches zero, P 00 and a0L both approach one and γ = 0.5

and Eqs. (3.21) and (3.24) yield the Hertzian pressure distribution, Eq. (3.20).

63



Table 3.2: Physical input parameters for spherical rough contacts

Parameter Dimension
Effective elastic modulus, E0 ML−1T−2

Force, F MLT−2

Microhardness, Hmic ML−1T−2

Radius of curvature, ρ L
Roughness, σ L
Max. contact pressure, P0 ML−1T−2

With the general pressure distribution profile, i.e., Eq. (3.21), the problem is reduced to

find relationships for P0 and aL. Additionally, the radius of the macrocontact area aL, based

on its definition, can be determined if P0 and the pressure distribution are known; therefore

the key parameter is the maximum contact pressure, P0.

3.5.1 General Pressure Distribution

Dimensional analysis or the Buckingham Π theorem has been applied to many physical phe-

nomena such as fluid flow, heat transfer and stress and strain problems. The Buckingham Π

theorem proves that in a physical problem including n quantities in which there are m dimen-

sions, the quantities can be arranged into n −m independent dimensionless parameters [69].

Table 3.2 summarizes the independent input parameters and their dimensions for spherical

rough contacts. Hmic is an effective (mean) value for the microhardness of the softer material

in contact.

Lambert and Fletcher [6] using published experimental surface data, proposed a correlation

for the absolute average asperity slopes, m, as a function of RMS roughness σ

m = 0.076 σ0.52 (3.25)

where σ is the surface RMS roughness in µm, see section 2.2.1 for more detail.

Since the surface slope m can be estimated using Eq. (3.25), it is not considered as an

independent input parameter and is not included in Table 3.2.

All quantities in Table 3.2 are known to be essential to the maximum contact pressure and

64



E' / Hmic

P
0

/P
0,

H

20 40 60 8010-2

10-1

100

α = 32.2

α = 3.22

α = 16.1

α = 0.08

α = 0.40

τ = 5333

10

Figure 3-13: Effect of microhardness on non-dimensional maximum contact pressure, τ = 5333

hence some functional relation must exist in the form of

P0 = P0
¡
ρ,σ, E0, F,Hmic

¢
(3.26)

Applying the Buckingham Π theorem, we find that there are three Π groups so the maximum

pressure can be more compactly stated as a function of these three non-dimensional parameters.

Following Greenwood et al. [68], we choose α the roughness parameter, Eq. (3.7), as one of the

non-dimensional parameters. The other non-dimensional parameters were chosen to be τ the

geometric parameter, and E0/Hmic the microhardness parameter. The geometric parameter τ

is chosen as

τ =
ρ

aH
=

µ
4E0ρ2

3F

¶1/3
(3.27)

The computer program explained in the previous section was run for a wide range of non-

dimensional input parameters, i.e. 0.005 ≤ α ≤ 100 and 50 ≤ τ ≤ 80 000, to construct Figs.
3-13 - 3-16. These values of α and τ are chosen to span a wide range applicable to most thermal

contact resistance problems. Values of α include the entire range of spherical rough contacts
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Figure 3-14: Effect of microhardness on non-dimensional maximum contact pressure, τ = 247
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Figure 3-15: Non-dimensional maximum contact pressure
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Figure 3-16: Non-dimensional radius of macrocontact

from very smooth (Hertzian α = 0) to extremely rough contacts. The geometric parameter τ

may be interpreted as a measure of the bulk strain. Since the bulk deformation is assumed

“elastic” and also to justify the half-space assumption [29] the radius of curvature must be

much larger than the contact area, ρ À aH . Thus the lower bound of τ was set arbitrarily at

τ = 50 and the upper bound was selected to cover a relatively large radii of curvature and light

loads.

The effect of microhardness parameter E0/Hmic, on the maximum contact pressure P 00 was

observed to be small and may be ignored, see Figs. 3-13 and 3-14. Figure 3-15 illustrates the

dimensionless maximum contact pressure in the form of a family of curves for a wide range

of α and τ . As α decreases, which is equivalent to a decrease in roughness or an increase in

the applied load, the dimensionless maximum pressure approaches unity, the Hertzian pressure.

Figure 3-16 illustrates the macrocontact radius as a function of α and τ . As can be seen, by

decreasing α, the dimensionless radius of contact approaches one or the Hertzian contact.

The dimensionless maximum contact pressure and the macrocontact radius plots were curve

fitted. The following expressions can be used to estimate the maximum dimensionless contact
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pressure and the dimensionless radius of contact, respectively

P 00 =
P0
P0,H

=
1

1 + 1.37α τ−0.075
(3.28)

a0L =
aL
aH

=


1.605/

p
P 00 0.01 ≤ P 00 ≤ 0.47

3.51− 2.51P 00 0.47 ≤ P 00 ≤ 1
(3.29)

The maximum difference between Eqs. (3.28) and (3.29) and the full model is estimated to be

less than 4.5 percent in the range of 0.01 ≤ P 00 ≤ 1. An expression for the non-dimensional
radius of the macrocontact, a0L, was developed as a function of α and τ in the form of

a0L =
aL
aH

= 1.80

√
α+ 0.31τ0.056

τ0.028
(3.30)

The following approximate expression for aL is proposed for contacts where the effective radius

of curvature is relatively large, i.e., approaching flat surface

a0L = 1.5
√
α+ 0.45 (3.31)

It is clear from Eqs. (3.28) and (3.30) that the effect of surface roughness on the contact

pressure and the macrocontact area is governed primarily by the roughness parameter α and

parameter τ has a second order effect.

The maximum contact pressure P0 from Eq. (3.28), is compared with the GT [38] model in

Fig. 3-17 over a range of α, for two values of µ which bracket a wide range of contacts [68]. As

shown, both models demonstrate the same trend over the comparison range; the two values of

τ were chosen to best fit the GT curves shown, they also cover a wide range of contacts.
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Figure 3-17: Comparison between present model and Greenwood and Tripp model, maximum
contact pressure

3.5.2 Compliance

The elastic deformation of the half-space can be calculated by substituting the general pressure

distribution Eq. (3.21) into Eq. (3.6), where the radius of the contact area is aL as:

ω0b (ξ) =



π

4
B (0.5, γ + 1) ξ = 0

Z ξ

0
s
¡
1− s2¢γK µs

ξ

¶
ds s < ξ

Z 1

ξ

¡
1− s2¢γK µξ

s

¶
ds s > ξ

(3.32)

where B (x, y) and ω0b = πE0ωb/ (4P0 aL) are the beta function and the non-dimensional bulk

deformation, respectively. A general analytical solution for the integrals in Eq. (3.32) does

not exist and they must be solved numerically for different values of γ. Since, the deformation

at the edge of the contact area is required to calculate the compliance, Eq. (3.32) was solved

numerically for a wide range of γ at ξ = 1. The solution was correlated and the following
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relationship is proposed:

ωb (aL) =
4P0 aL

πE0
h
4.79− 3.17 (P 00)3.13

i (3.33)

where 0 < P 00 ≤ 1. The maximum relative difference between Eq. (3.33) and the numerical

solution is approximately 4.6 percent. In the Hertzian limit, elastic deformations of the half-

space at the center and the edge of the contact area are

ωb,H (0) =
a2H
ρ
=

πP0,H aH
2E0

(3.34)

ωb,H (aH) =
a2H
2ρ

=
πP0,H aH
4E0

(3.35)

It can be seen that in the Hertzian limit, Eqs. (3.32) and (3.33) yield the Hertzian values,

i.e., Eqs. (3.34) and (3.35), respectively. Figure 3-18 shows non-dimensional deformations at

the center ω0b (0) and at the edge of the contact area ω0b (aL) ; in addition, the ratio of these

deformations is shown in the plot over a wide range of P 00. As the non-dimensional maximum

pressure decreases, i.e., the effect of roughness becomes more significant, bulk deformations

at both the center and the edge of the contact decrease. As seen in Fig. 3-18, the ratio of

deformations, ωb (0) /ωb (aL), increases as the non-dimensional maximum pressure P 00 decreases.

In other words, the ratio of ωb (0) /ωb (aL) is larger for “rougher” contacts which is a direct

result of the general pressure distribution profile, i.e., the general pressure falls off faster than

the Hertzian pressure, see Fig. 3-12.

The mutual approach of distant points in the two solids is called compliance. Compliance

between rough spherical bodies is a function of asperity deformation ωa (r), the bulk deformation

ωb (r), and the sphere profile and is given by [70]

κ = r2/2ρ+ ωa (r) + ωb (r)

Assuming the deformation of asperities at the edge of the contact area is zero ωa (aL) = 0, one

can find the compliance from

κ = a2L/2ρ+ ωb (aL) (3.36)
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Figure 3-18: Bulk deformation at center and edge of contact area

Combining Eqs. (3.29), (3.33), and (3.36), one obtains

κ0 =
κ

κH
= 0.5

¡
a0L
¢2
+

8P 00 a0L
π2
h
4.79− 3.17 (P 00)3.13

i (3.37)

where κH = a2H/ρ is the Hertzian compliance. Equation (3.37) is plotted in Fig. 3-21 for a

range of P 00.

3.6 Comparison With Experimental Data

To verify the proposed model, the radius of the contact area and the compliance predicted by

the model are compared with experimental data collected by Tsukada and Anno (TA) [49],

Greenwood et al. (GJM) [68], and Kagami et al. (KYH) [70]. The experimental arrangement

contains a smooth sphere placed in contact with a rough plane. The contact area was made

visible by depositing a thin layer of copper [68] or an evaporated carbon film and a lamp

black film [70]. The contact radii were measured using a metallurgical microscope. Due to
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7.8 ≤ τ ≤ 47.6
ρ = 1.5, 5, 10 mm, 0.11 ≤ σ ≤ 2.1 µm, 23.5 ≤ F ≤ 1375 N
SUJ 2 spheres − SK 3 flats

τ = ρ / aH

Figure 3-19: Summary of parameter values of experimental data

the measurement method, the experimental data may contain a relatively high uncertainty

particularly at light loads or very rough surfaces since it involved some degree of judgment.

Ranges of non-dimensional parameters α and τ covered by the experimental data are shown in

Fig. 3-19. The experimental data include contact between similar (steel-steel) and dissimilar

(steel-copper) materials and cover a relatively wide range of load, roughness, and radius of

curvature. The proposed relationship for aL, Eq. (3.29) is compared with the data in Fig. 3-20

and good agreement is observed. The present model shows the data trend over the entire range

of the comparison. More than 160 data points, 26 sets, were compared with the present model

in Fig. 3-20. Specimen materials, roughness, and radius of curvature for data sets are listed in

Fig. 3-20. The RMS difference between the proposed expression and the data is approximately

6.2 percent.

Greenwood et al. [68] compared their data and Kagami et al. [70] data with the GT

model. Their comparison showed a relatively high discrepancy especially with the Kagami et

al. data. Greenwood et al. attributed the observed discrepancy to the experimental difficulties

72



⊗
⊗⊗⊗⊗⊕⊕⊕⊕∅∅∅∅∅∅

∪ ∪∪∪∪∩∩∩∩
⊃⊃⊃⊃⊃

* *******

P'0 = P0 / P0,H

a'
L

=
a L

/a
H

0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7 KYH1
KYH- Hz
KYH2
KYH3
KYH4
TA1
TA2
TA3
TA4
TA5
TA6
TA7
TA8
TA9
TA10
TA11
TA12
TA13
TA14
TA15
TA16
TA- Hz
GJM1
GJM2
GJM3
GJM4
+ 15 %
− 15%
MODEL

⊗
⊕
∅
∪
∩
⊃
*

Tsukada and Anno 1979, specimens: SUJ 2 spheres and SK 3 flats
test TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8
σ µm 0.11 0.35 0.84 0.11 0.35 0.87 0.12 0.35
ρ mm 1.5 1.5 1.5 5 5 5 10 10

test TA9 TA10 TA11 TA12 TA13 TA14 TA15 TA16
σ µm 0.83 0.24 0.40 2.10 0.19 0.39 0.62 0.32
ρ mm 10 5 5 5 5 5 5 5

Greenwood, Johnson, and Matsubara 1984
test GJM1 GJM2 GJM3 GJM4
σ µm 0.19 0.54 1.7 2.2
specimens: hard steel balls of radius 12.7 mm
and hard steel flats

Kagami, Yamada, and Hatazawa 1982
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KYH 1&2: carbon steel (0.3% C) flats
KYH 3&4: pure copper (99.9% pure) flats
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Figure 3-20: Comparison between present model and experimental data, contact radius

of measuring the contact radius. They also stated that the Kagami et al. data did not correlate

particularly well with the roughness parameter α. However, as can be seen in Fig. 3-20, this

discrepancy has not been encountered in this study. Additionally, our comparison shows that

the Kagami et al. data (except for a few points for very rough surfaces at light loads) follow

the correlation very well.

Kagami et al. [70] also measured the compliance between a smooth steel sphere and rough

steel and copper plates. They collected more than 40 data points, two steel-steel and two steel-

copper sets. Compliances were measured under various loads and with different roughness using

differential transformers [70]. Figure 3-21 shows the comparison between the present model,

Eq. (3.37) and the KYH compliance data. The present model shows good agreement with the
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Figure 3-21: Comparison between present model and experimental data, compliance

RMS difference approximately 7.7 percent.

3.7 Elastic Compression

In most engineering applications the size of the contacting bodies is finite and/or the radius of

curvature is large, especially in the contacts where the surfaces are almost flat or slightly curved.

The macrocontact area extends to the boundaries of the contacting bodies, i.e., aL = bL, as a

result of applying a specific force that we call the critical force, Fc, see Fig. 3-22. The size of

the macrocontact area remains constant as the force is increased beyond the critical force, but

the contact pressure increases. Since the bulk deformation is assumed to be elastic, we refer to

the above contact problems as elastic compression. Elastic compression cannot be treated as a

half-space contact problem, since the half-space assumption cannot be justified especially in the

regions close to the edge of the contacting bodies. The critical force and the critical pressure

distribution, the pressure distribution associated with the critical force for a specified spherical

rough contact assembly are unique.
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Figure 3-22: Contact of two finite spherical rough bodies

In contact stress theory the displacement at any point in the contact surface depends on

the distribution of pressure throughout the whole contact. According to Johnson [20] the above

interconnection may be avoided if the solids are modeled by a simple Winkler elastic foundation

rather than a half-space. As illustrated in Fig. 3-23, the elastic compression approximation

implies that as load passes the critical load the elastic foundation, which rests on a rigid base,

is compressed by the rigid spherical indenter. There is no interaction between the springs of the

model, i.e., shear between adjacent elements of the foundation is ignored. Therefore, contact

pressure at any point depends only on the displacement at that point. Equation (3.21) can

be used to calculate the contact pressure distribution, where the external force is less than or

equal to the critical load. Beyond the critical load where F > Fc, the size of the macrocontact

remains constant and the elastic foundation approximation may be used to determine the

pressure distribution. A uniform increase will be added to the critical pressure distribution at

each point in the contact area by assuming the elastic foundation approximation. Therefore,
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Figure 3-23: Elastic foundation, Winkler model

the general pressure distribution can be summarized as

P (ξ) =


P0
¡
1− ξ2

¢γ
F ≤ Fc

P0,c
¡
1− ξ2

¢γc + F − Fc
πb2L

F ≥ Fc
(3.38)

where aL = bL for F ≥ Fc, P0,c, and γc are the maximum pressure and the exponent of the

critical pressure distribution, respectively. Figure 3-24 shows the predicted pressure distribu-

tions for some values of the external load as an example. The parameters of the contact are:

ρ = 10 m, E0 = 112 GPa, σ = 2 µm, and bL = 12 mm.

To find a relationship for the critical force, Eqs. (3.28) and (3.31) should be solved simul-

taneously where aL = bL. Equation (3.31) is a function of α only and it was developed for

relatively large radii of curvature, i.e., the situations where the elastic compression more likely

occurs. The critical force can be estimated from,

Fc =
4E0

3ρ

£
max

©
0,
¡
b2L − 2.25σρ

¢ª¤3/2
(3.39)
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Figure 3-24: Contact pressure distribution

where max{x, y} returns the maximum value between x and y.

A criterion for defining the flat surface, where the surface curvature has a negligible effect

on the pressure distribution can be derived by setting Fc = 0. Setting Fc equal to zero means

that if no load is applied aL = bL, thus the contacting surfaces are ideally flat, which leads to

b2L
σρ
≤ 2.25 (3.40)

For spherical surfaces with large radii of curvature, Clausing and Chao [4] used a geometrical

approximation that relates the maximum out-of-flatness, δ (see Fig. 3-23) to the radius of

curvature

ρ =
b2L
2δ

(3.41)

Combining Eqs. (3.40) and (3.41), we obtain a criterion for out-of-flatness of a flat surface

δ

σ
≤ 1.12 (3.42)
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In other words, if the out-of-flatness and the roughness of a surface are in the same order

of magnitude, the surface is flat, i.e., surface curvature has no effect on the contact pressure

distribution. This criterion is derived based on the concept that the effect of surface curvature

on the contact pressure is negligible in flat or conforming contacts. In the next Chapter another

criterion will be defined based on a thermal contact resistance perspective.

3.8 Summary and Conclusions

The mechanical contact of spherical rough surfaces was studied and a new analytical model was

developed. The deformations of surface asperities were considered to be plastic while the bulk

deformation was assumed to remain within the elastic limit.

A closed set of governing relationships was derived and solved numerically. A computer

code was developed to solve the governing relationships. The pressure distributions predicted

by the model were plotted for different values of surface roughness and it was shown that as the

surface roughness approaches zero the predicted pressure distribution approaches the Hertzian

pressure.

Additionally, it was shown that a general pressure distribution profile exists that encom-

passes all spherical rough contacts. The maximum contact pressure was observed to be the

key parameter that specifies the contact pressure distribution. The suggested general pressure

distribution expression yields the Hertzian contact pressure at the limit, where roughness is set

to zero.

Using dimensional analysis, we obtained the number of independent non-dimensional para-

meters that describe the maximum contact pressure to be three, the roughness α, the geomet-

ric τ , and the microhardness E0/Hmic parameters. The effect of the microhardness parameter

E0/Hmic on the maximum contact pressure was observed to be small and therefore ignored.

Simple correlations were suggested for calculating the maximum contact pressure distribution

and the radius of the macrocontact area, as functions of roughness α, and geometric parameters

τ . The present model was also compared with the existing model of Greenwood and Tripp [38]

and showed good agreement. Elastic deformation produced on the half-space as a result of

applying the general pressure distribution was found. Compact relationships for the deforma-
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tion at the center and at the edge of the contact area were proposed. Additionally, a simple

expression for the compliance of spherical rough contacts was proposed. The compliance and

the contact radius predicted by the model were compared against more than 200 experimental

data points collected by others and showed good agreement.

An expression for estimating the critical load was derived, where aL = bL. The Winkler

approximation was used to derive a relationship for the contact pressure distributions, where

the loads are higher than the critical load. This expression along with the above correlation

formed a general pressure distribution that encompasses all possible contact cases ranging from

the smooth Hertzian to the conforming rough contact.

Also a criterion was offered to identify the flat surface, where the effect of surface curvature

on the contact pressure can be neglected. Based on this criterion, the surface can be considered

flat if the surface out-of-flatness and roughness are in the same order of magnitude.

The advantages of the present model over the Greenwood and Tripp [38] (GT) model can

be summarized as,

• the present model requires two input surface parameters, roughness σ, and surface slope
m. The GT model needs three input parameters, i.e., σs,β, and ηs

• unlike the summit radius β and the microcontact density ηs in the GT model, the present
model input parameters can be measured directly and they are not sensitive to the surface

measurements

• for the present model, a general pressure distribution profile was proposed that covers all
possible spherical contact cases

• simple correlations are proposed for determining the maximum contact pressure and the

radius of macrocontact as functions of two non-dimensional parameters, i.e., the roughness

parameter α and the geometric parameter τ . While the GT model requires computer

programing and tedious iteration methods.
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Chapter 4

Thermal Analysis

4.1 Introduction

As mentioned in Chapter 1, thermal energy can be transferred between rough contacting bodies

in a vacuum via conduction through the microcontacts and radiation. Radiation heat transfer

across the interface is small and therefore is ignored. As illustrated in Fig. 1-1, heat flow is

constrained to pass through the macrocontact, and then, in turn through the microcontacts.

Two sets of resistances in series can be used to represent the thermal contact resistance (TCR)

for a joint in a vacuum: the large-scale or macroscopic constriction resistance, RL, and the

small-scale or microscopic constriction resistance, Rs [59, 22, 14]

Rj = Rs +RL (4.1)

Many theoretical models for determining TCR have been developed for two limiting cases, i)

conforming rough, where contacting surfaces are assumed to be perfectly flat, and ii) elasto-

constriction, where the effect of roughness is neglected, i.e., contact of two smooth spherical

surfaces. The above limiting cases are simplified cases of real contacts since engineering surfaces

have both out-of-flatness and roughness simultaneously. As discussed in Chapter 1, TCR prob-

lems basically consist of three separate problems: 1) geometrical, 2) mechanical, and 3) thermal,

each sub-problem also includes a micro and macro scale component. A mechanical model was

developed and presented in Chapter 3 of this study. The mechanical analysis determines the
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macrocontact radius and the effective pressure distribution for the large-scale contact problem.

The microcontact analysis gives the local separation between the mean planes of the contacting

bodies, the local mean size and the number of microcontacts. The results of the mechanical

analysis are used in the thermal analysis to calculate the microscopic and macroscopic thermal

constriction resistances.

Few analytical models for contact of two non-conforming rough surfaces exist in the liter-

ature. In Chapter 2, existing analytical non-conforming rough TCR models are reviewed and

it was showed through comparison with experimental data that none of the existing models

covers the above mentioned limiting cases and the transition region in which both roughness

and out-of-flatness are present and their effects on TCR are of the same importance.

4.2 Theoretical Background

Considering the curvature or out-of-flatness of contacting surfaces in a comprehensive manner

is very complex because of its random nature. Certain simplifications must be introduced to de-

scribe the macroscopic topography of surfaces using a few parameters. Theoretical approaches

by Clausing and Chao [59], Mikic and Rohsenow [14], Yovanovich [22], Nishino et al. [5], and

Lambert and Fletcher [6] assumed that a spherical profile might approximate the shape of the

macroscopic nonuniformity. According to Lambert [23] this assumption is justifiable, because

nominally flat engineering surfaces are often spherical, or crowned (convex) with a monotonic

curvature in at least one direction. The approximate relationship between the radius of curva-

ture and the maximum out-of-flatness, for relatively large radii of curvature (approaching flat),

is [4]

ρ =
b2L
2δ

(4.2)

where δ is the maximum out-of-flatness of the surface.

When two non-conforming random rough surfaces are placed in mechanical contact, many

microcontacts are formed within the macrocontact area. Microcontacts are small and located

far from each other. Thermal contact models are constructed based on the premise that inside

the macrocontact area a number of parallel cylindrical heat channels exist. The real shapes of

microcontacts can be a wide variety of singly connected areas depending on the local profile
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of the contacting asperities. Yovanovich et al. [52] studied the steady-state thermal constric-

tion resistance of singly connected planar contacts of arbitrary shape. By using an integral

formulation and a semi-numerical integration process applicable to any shape, they proposed a

definition for thermal constriction resistance based on the square root of the contact area. A

non-dimensional constriction resistance based on the square root of area was proposed, which

varied by less than 5% for all shapes considered. Yovanovich et al. [52] concluded that the

real shape of the contact was a second order effect, and an equivalent circular contact, where

surface area is preserved, can be used to represent the contact.

As the basic element for macro and micro thermal analysis, thermal constriction of the

flux tube was employed by many researchers. Cooper et al. [7] proposed a simple accurate

correlation for calculating the thermal spreading resistance of the isothermal flux tube, (see

section 2.4.1 for more detail):

Rflux tube 1 +Rflux tube 2 =
ψ (ε)

2ksa
=
(1− ε)1.5

2ksa
(4.3)

where ε = a/b, ks = 2k1k2/ (k1 + k2), and ψ (·) is the spreading resistance factor. In Eq. (4.3),
it is assumed that the radii of two contacting bodies are the same, i.e., b1 = b2 = b. For the

general case where b1 6= b2, thermal spreading resistance will be, Rflux tube = ψ (a/b) /4ka.

Figure 4-1 illustrates the thermal resistance network for non-conforming rough contacts.

The total or joint resistance can be written as

Rj = RL,1 +Rs,1 +Rs,2 +RL,2 (4.4)

where µ
1

Rs

¶
1,2

=

Ã
nsX
i=1

1

Rs,i

!
1,2

(4.5)

where ns, Rs,i are the number of microcontacts and the resistance of each microcontact, respec-

tively. Subscripts 1, 2 signify bodies 1, 2.
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Figure 4-1: Thermal resistance network for non-conforming rough contacts in a vacuum

4.3 The Present Model

In addition to the geometrical and mechanical assumptions, which were discussed in Chapter

3, the remaining assumptions of the present model are:

• contacting solids are isotropic and thick relative to the roughness

• radiation heat transfer is negligible

• microcontacts are circular and steady-state heat transfer at microcontacts

• microcontacts are isothermal, Cooper et al. [7] showed that all microcontacts must be at
the same temperature, provided the conductivity in each body is independent of direction,

position and temperature.

• surfaces are clean and the contact is static.

Figure 4-2 shows the geometry of the contact with equivalent radius of curvature and rough-

ness where aL is the radius of the macrocontact area and bL is the radius of the contacting
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Figure 4-2: Geometry of contact

bodies.

The flux tube solution is employed to determine the macrocontact thermal resistance, i.e.,

RL =
(1− aL/bL)1.5

2ksaL
(4.6)

Separation between the mean planes of contacting bodies and pressure distribution are not

uniform in the contact area, consequently, the number and the average size of microcontacts

decrease as the radial position r increases. Figure 4-3 illustrates the modeled geometry of

the microcontact distribution, macrocontact area the circle with radius aL, is divided into

surface elements, dashed rings with increment dr. Figure 4-3 shows the mean average size

of microcontacts as small filled-circles. Around each microcontact a dashed circle illustrates

the flux tube associated with the microcontact. While microcontacts can vary in both size and

shape, a circular contact of equivalent area can be used to approximate the actual microcontacts,

since the local separation is uniform in each surface element.

Local spreading resistance for microcontacts can be calculated by applying the flux tube

expression

Rs (r) =
ψ [ε (r)]

2ksas (r)
(4.7)
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Figure 4-3: Microcontacts distribution in contact area and thermal resistance network for a
surface element

where ε (r) = as (r) /bs (r) is the local microcontacts relative radius, as (r) , ψ (·) are the local
mean average microcontact radius and the spreading resistance factor given by Eq. (4.3).

The microcontacts local density and relative radius can be calculated from, see Chapter 3,

ε (r) =

s
Ar (r)

Aa (r)
=

r
1

2
erfc λ (r) (4.8)

ns (r) =
1

16

³m
σ

´2 exp £−2λ2 (r)¤
erfc λ (r)

Aa (4.9)

where λ (r) = Y (r) /
√
2σ, Ar and Aa are non-dimensional separation, and real and apparent

contact area, respectively.

Thermal resistance network for a surface elements dr is shown in Fig. 4-3. In each element

ns (r) microcontacts exist which provide identical parallel paths for transferring thermal energy.

Therefore, microcontact thermal resistance for a surface element dRs (r) is

dRs (r) =
Rs (r)

ns (r)
(4.10)

As shown in Fig. 4-4, surface elements form another set of parallel paths for transferring thermal

energy in the macrocontact area. Therefore, the effective micro thermal resistance for the joint
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Figure 4-4: Thermal resistance network for surface element

Table 4.1: Input parameters for a typical contact problem

ρ = 25 mm F = 50 N
σ = 1.41 µm E0 = 112.1 GPa
m = 0.107 c1/c2 = 6.27 GPa/− 0.15
bL = 25 mm ks = 16 W/mK

is

Rs =
1P

1/dRs (r)
(4.11)

The joint resistance is the sum of the macro and micro thermal resistances, i.e., Eq. (4.1).

4.4 Results

As explained in Chapter 3, a simulation routine was developed to calculate the thermal joint

resistance. As an example, contact of a 25 mm sphere with a flat surface was considered and

solved with the routine. The contacting bodies are stainless steel and have a 1.41 µm equivalent

roughness, Table 4.1 lists the contact parameters. The mechanical results were presented in

Chapter 3 and Figs. 4-5 and 4-6 present thermal outputs. As expected, the thermal resistance

of the microcontacts (resistance of the local mean microcontact) increases as r increases. The
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Figure 4-5: Micro thermal contact resistance

microcontact relative radius ε has its maximum value at the center of the contact and decreases

with increasing radial position r.

To investigate the effect of input parameters on thermal joint resistance Rj and its com-

ponents, i.e., the macro RL and the micro Rs thermal resistances, the simulation routine was

run for a range of each input parameter, while the remaining parameters in Table 4.1 were

held constant. Additionally, elastoconstriction thermal resistance introduced by Yovanovich

[63] indicated by RH , was also included in the study. Elastoconstriction is a limiting case in

which the surfaces are assumed to be perfectly smooth, i.e., aL = aH and Rs = 0.

The effect of roughness on macro, micro, and joint resistances are shown in Fig. 4-7. Recall

that the joint resistance is the summation of the macro and micro contact resistances. With

relatively small roughness, the macro thermal resistance dominates the joint resistance and the

micro thermal resistance is negligible, also the joint resistance is close to the elastoconstriction

thermal resistance. By increasing roughness, aL becomes larger thus, the macro thermal resis-

tance decreases, while the micro thermal resistance increases and at some point they become

comparable in size. An additional increase in the surface roughness leads to a situation where
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Figure 4-6: Microcontacts relative radius

the micro thermal resistance controls the joint resistance. Figure 4-7 shows that for a fixed

geometry and load, there is a roughness that minimizes the thermal joint resistance.

The effect of load on micro, macro and joint thermal resistance is shown in Fig. 4-8. The

micro thermal resistance controls the joint resistance at light loads due to the small number

and size of the microcontacts. As the load increases the joint resistance decreases continuously,

micro and macro thermal resistances become comparable in size and at larger loads the macro

thermal resistance becomes the controlling component of the joint resistance. At higher loads

the joint resistance approaches the elastoconstriction resistance as if no roughness exists.

Figure 4-9 shows the effect of radius of curvature. At very small radii, the macro thermal

resistance dominates due to the small size of the macrocontact. As the radius of curvature

increases, approaching a flat surface, the micro thermal resistance becomes more important

and the macro resistance becomes smaller and eventually when aL = bL the macro resistance

falls to zero. Note that the micro thermal resistance does not change as the surface curvature

ρ varies over a wide range, this is a very important trend and will be discussed later.
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4.5 Alternative Approach

The goal of this study is to develop simple correlations for determining TCR. In this section, a

general expression for the micro thermal spreading resistance is derived, which in conjunction

with the macro thermal resistance, Eq. (4.6), gives a correlation to calculate the thermal joint

resistance in a vacuum environment.

The amount of heat transferred in a non-conforming rough contact is

Q =
X

dQ =

ZZ
contact plane

dQ (4.12)

where dQ is the heat transferred in a surface element. The local thermal joint conductance is

a function of r

Q =

ZZ
contact plane

hs (r)∆TsdAa (4.13)

where dAa and ∆Ts = constant, are the area of a surface element and the temperature drop,
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respectively. Since the macrocontact area is approximated as a circle

Q = 2π∆Ts

Z aL

0
hs (r) rdr (4.14)

The effective thermal micro conductance for a joint can be defined as: hs = Q/Aa∆Ts. There-

fore, the effective microcontact conductance can be found from

hs =
2π

Aa

Z aL

0
hs (r) rdr (4.15)

or in terms of thermal resistance where R = 1/ (hAa) ,

Rs =
1

2π

µZ aL

0
hs (r) rdr

¶−1
(4.16)

Yovanovich [8] proposed an accurate expression for determining the thermal conductance of

conforming rough contacts,

hs = 1.25ks

³m
σ

´µ P

Hmic

¶0.95
(4.17)

where Hmic is the microhardness of the softer material in contact. Combining Eqs. (4.16) and

(4.17), a relationship between thermal micro resistance and pressure distribution can be found

Rs =
σ

2.5πmks

"Z aL

0

·
P (r)

Hmic (r)

¸0.95
rdr

#−1
(4.18)

Microhardness depends on several parameters: mean surface roughness σ, mean absolute slope

of asperities, m, type of material, method of surface preparation, and applied pressure. Ac-

cording to Hegazy [25], surface microhardness can be introduced into the calculation of relative

contact pressure in the form of the Vickers microhardness

Hv = c1
¡
d0v
¢c2 (4.19)

where Hv is the Vickers microhardness in (GPa), d0v = dv/d0 and d0 = 1 (µm), dv is the Vickers

indentation diagonal in µm and c1 and c2 are correlation coefficients determined from Vick-

ers microhardness measurements. Song and Yovanovich [26] developed an explicit expression
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relating microhardness to the applied pressure

P

Hmic
=

µ
P

H 0

¶ 1

1 + 0.071c2 (4.20)

where H 0 = c1 (1.62σ0/m)c2 , σ0 = σ/σ0 and σ0 = 1 µm.

Sridhar and Yovanovich [27] developed empirical relations to estimate the Vickers micro-

hardness coefficients, see Chapter 2. However, in situations where an effective value for micro-

hardness Hmic,e is known the microhardness coefficients can be calculated from c1 = Hmic,e and

c2 = 0.

Combining Eqs.(4.18), and (4.20) gives

Rs =
σH 0s

2.5πksm

µZ aL

0
[P (r)]s rdr

¶−1
(4.21)

where s = 0.95/ (1 + 0.071c2). A general pressure distribution was proposed in Chapter 3,

which covers the entire spherical rough contacts including flat contacts

P (ξ) =



F/πb2L Fc = 0

P0
¡
1− ξ2

¢γ
F ≤ Fc

P0,c
¡
1− ξ2

¢γc + F − Fc
πb2L

F ≥ Fc

(4.22)

where ξ = r/aL, γ = 1.5 (P0/P0,H) (aL/aH)
2 − 1. Fc is the critical force where aL = bL and it

is given by

Fc =
4E0

3ρ

£
max

©
0,
¡
b2L − 2.25σρ

¢ª¤3/2
(4.23)

where max{x, y} returns the maximum value between x and y. Substituting the pressure

distribution, for F ≤ Fc into Eq. (4.21) one obtains

Rs =
σ (H 0/P0)s

2.5π m ks a2L

·Z 1

0

¡
1− ξ2

¢sγ
ξ dξ

¸−1
(4.24)
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After evaluating and simplifying the integral, we obtain

Rs =
σ (1 + sγ)

1.25π m ks a2L

µ
H 0

P0

¶s
(4.25)

For F ≥ Fc, the effective microcontact thermal resistance, following the same method, becomes

Rs =
σ

1.25πmks b2L

·µ
H 0

P0,c

¶s
(1 + sγc) +

µ
πH 0b2L
F − Fc

¶s¸
(4.26)

where P0,c and γc are the values at the critical force. The general relationship for micro thermal

resistance can be summarized as

R∗s =



µ
πH 0b2L
F

¶s
Fc = 0

µ
bL
aL

¶2µH 0

P0

¶s
(1 + sγ) F ≤ Fc

µ
H 0

P0,c

¶s
(1 + sγc) +

µ
πH 0b2L
F − Fc

¶s
F ≥ Fc

(4.27)

where R∗s = 1.25πb2Lks (m/σ)Rs.

4.5.1 Macrocontact Boundary Condition

Equation (4.17) shows that the micro conductance, hs, is (almost) proportional to the contact

pressure. From the general pressure distribution profile Eq. (3.21), we know that the contact

pressure has its maximum value at the center of the contact where r = 0, which in turn means

that the micro conductance, and consequently the heat flux, must have their maximum at the

center. However, assuming an isothermal boundary condition for the macrocontact area implies

that the heat flux has its minimum at the center and approaches infinity at the edge of the

macrocontact area r = aL.

To resolve this problem, we start with investigating the trend of the micro thermal resistance

Rs shown in Fig 4-9. In this plot, all input parameters of the contact are kept constant and

the surface radius of curvature has been varied from a small to a relatively large value, i.e.,

conforming rough surface. For plotting Fig 4-9, the full thermal model has been used which
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employs the local number and radius of the microcontacts and calculates the effective micro

thermal resistance directly from the flux tube solution, see section 4.3. As shown in Fig. 4-9,

the micro thermal resistance remains unchanged as the surface radius of curvature is varied,

thus it can be concluded that the micro thermal resistance is a very weak function of the radius

of curvature or the pressure distribution profile. In fact it is determined by the external load. In

section 4.5.2, a correlation for micro thermal resistance is derived that shows the micro thermal

resistance is inversely proportional to the external load, Eq. (4.29). One way to avoid this

problem is to calculate a mean contact pressure over the macrocontact area, i.e., P = F/πa2L

then use Eq. (4.17) to find the effective micro thermal resistance Rs.

The isothermal boundary condition assumption of the macrocontact area can be proven

independently. The present thermal model is constructed based on the premise that the micro-

contacts are isothermal. The microcontacts are also more or less at the same temperature, i.e.,

the contact temperature. If these assumptions are granted, it can be shown that an isothermal

surface exists at a distance beneath the contact plane, see section 5.3. This isothermal plane

can be used for calculating the macro thermal resistance RL.

4.5.2 Approximate Model For Micro Thermal Resistance

Equation (4.27) can be simplified by introducing an approximation. Since the Vickers coefficient

c2 is negative and in the range of −0.35 ≤ c2 ≤ 0, the parameter s = 0.95/ (1 + 0.071c2) is close
to one, i.e., 0.95 ≤ s ≤ 0.97 and can be approximated as, s = 1. Introducing this simplification,
the micro thermal resistance Rs, i.e., Eq. (4.21) simplifies to,

Rs =
σH 0

2.5πksm

µZ aL

0
P (r) rdr

¶−1
(4.28)

From a force balance one can write, F = 2π
R aL
0 P (r) rdr, and Eq. (4.28) becomes,

Rs =
H 0

1.57ksF

³ σ
m

´
(4.29)

where, the leading constant in Eq. (4.17) has been changed from 1.25 to 1.57 to compensate

for introducing the approximation, where the exponent s is set one. The approximate model,

Eq. (4.29), is compared with the full model for conforming rough contacts, Eq. (4.27)-a, in
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Figure 4-10: Comparison between approximate and full model, conforming rough contacts

Fig. 4-10, where an average value of s = 0.96 was chosen. It can be seen that the approximate

model shows good agreement with the full model in the range of 2 × 10−4 ≤ P/H 0 ≤ 5 × 10−2,
which includes a wide range of loading, i.e., moderate and high loads. The difference between

the approximate and the full model increases in light loads, P/H 0 < 10−4.

Equation (4.29) is general and applicable to all contact geometries, i.e., conforming and

non-conforming rough contacts. The approximate model provides a simpler relationship to

determine the micro thermal resistance Rs. In addition the approximate effective micro thermal

resistance is independent of the surface curvature. This trend can also be observed in Fig. 4-9,

where it should be noted that the full model (computer program) with no simplifications was

used to construct the plot. Also from the approximate relationship, it can be concluded that

the profile of the pressure distribution does not affect the effective micro thermal resistance.

The joint resistance can be found using the approximate Rs and by superimposing Eqs.

(4.6) and (4.29)

Rj =
H 0

1.57ksF

³ σ
m

´
+
(1− aL/bL)1.5

2ksaL
(4.30)

From Eq. (4.30) one can conclude that i) the effective micro thermal resistance, except for the
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Table 4.2: Range of parameters for the experimental data

Parameter
7.15 ≤ bL ≤ 14.28 mm
25.64 ≤ E0 ≤ 114.0 GPa
7.72 ≤ F ≤ 16763.9 N
16.6 ≤ ks ≤ 227.2 W/mK
0.04 ≤ m ≤ 0.34
0.12 ≤ σ ≤ 13.94 µm
0.013 ≤ ρ / 120 m

thermal conductivity, is only a function of the contact micro-scale characteristics, i.e., surface

roughness σ, slope m, microhardness H 0, and the load F , ii) on the other hand, the macro

thermal resistance is a function of the macro-scale contact parameters, i.e., the macrocontact

radius aL, and size of the contacting bodies bL. These conclusions are in agreement with the

TCR analysis described in Fig. 1-3. From Chapter 3, we know that the macrocontact radius

is a function of the effective elasticity modulus E0, radius of curvature ρ, surface roughness σ,

and the load F .

The applied load and the surface roughness appear to play important roles in both macro

and micro thermal resistances. The effect of surface roughness on the macro resistance is limited

to the macrocontact radius, aL. The applied load is the connecting bridge between the macro

and micro mechanical analyses, since the force balance must be satisfied in both analyses.

4.6 Comparison With Experimental Data

During the last four decades a large number of experimental data have been collected for a

wide variety of materials such as aluminium, brass, magnesium, nickel 200, silver and stainless

steel in a vacuum. About 600 data points were collected from an extensive review of the

literature, summarized and compared with the present model. As summarized in Table 4.2,

the experimental data form a complete set of the materials with a wide range of mechanical,

thermal, and surfaces characteristics used in applications where TCR is of concern. The data

also include the contact between dissimilar metals such as Ni200-Ag and SS-CS.

Generally, TCR experimental procedures include two cylindrical specimens of the same

diameter bL which are pressed coaxially together by applying an external load in a vacuum
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Table 4.3: Reseacher and specimen materials used in comparisons

Ref. Researcher Material(s)

A Antonetti [64]
½
Ni200
Ni200-Ag

B Burde [51] SPS 245, CS

CC Clausing-Chao [59]


Al2024 T4
Brass Anaconda
Mg AZ 31B
SS303

F Fisher [61] Ni 200-Carbon Steel

H Hegazy [25]


Ni200
SS304
Zircaloy4
Zr-2.5%wt Nb

K Kitscha [60] Steel 1020-CS
MM McMillan-Mikic [71] SS303
MR Mikic-Rohsenow [14] SS305
M Milanez et al. [65] SS304

chamber. After reaching steady-state conditions, TCR is measured at each load, see Chapter

6 for more detail. These experiments have been conducted by many researchers such as Burde

[51] and Clausing and Chao [59]. Table 4.3 indicates the researchers, reference publications,

specimen designation, and the material type used in the experiments.

The comparison includes all three regions of TCR, i.e., the conforming rough, the elastocon-

striction and the transition. Appendix A summarizes the experiment number, i.e., the number

which was originally assigned to a particular experimental data set by the researchers and geo-

metrical, mechanical and thermal properties of the experimental data, as reported. Clausing

and Chao [59], Fisher [61], Kitscha [60], and Mikic and Rohsenow [14] did not report the surface

slope m; the Lambert and Fletcher [6] correlation was used to estimate these values, see Table

2.1. Additionally, the exact values of radii of curvature for conforming rough surfaces were not

reported. Since these surfaces were prepared to be optically flat, radii of curvature in the order

of ρ ≈ 100 m are considered for these surfaces.

Figure 4-11 illustrates the comparison between the present model and the experimental
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Figure 4-11: Comparison of present model with experimental data
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data, with Eqs. (4.6) and (4.27), where

R∗j = ksbLRj

Ω =
(1−B)1.5

2B
+



(σ/m)

1.25πbL

µ
H 0

P

¶s
Fc = 0

(σ/m) (1 + sγ)

1.25πbLB2

µ
H 0

P0

¶s
F ≤ Fc

(σ/m)

1.25πbL

½µ
H 0

P0,c

¶s
(1 + sγc) +

µ
πH 0b2L
F − Fc

¶s¾
F ≥ Fc

(4.31)

where B = aL/bL ≤ 1, and P0 = P0,H/
¡
1 + 1.37ατ−0.075

¢
is the maximum contact pressure.

The parameter Ω is the non-dimensional TCR predicted by the (full) model, i.e., Ω = R∗s +R∗j
or R∗j = Ω. Therefore the model is shown by a 45-degree line in Fig. 4-11. The macrocontact

radius aL can be determined from Eq. (3.30),

aL = aH
1.80
√
α+ 0.31 τ0.056

τ0.028
(4.32)

Using Eq. (4.32) a relationship for B can be found as a function of non-dimensional and

geometrical parameters, i.e.,

B =
aL
bL
= max

(
1, 1.80

µ
aH
bL

¶ √
α+ 0.31 τ0.056

τ0.028

)
(4.33)

Experimental data are distributed over four decades of Ω from approximately 0.03 up to 70.

The model shows good agreement with the data over the entire range of comparison with the

exception of a few points. The approximate model, Eq. (4.30), was also compared with the

experimental data using the same method and showed good agreement; since the plots are

almost identical a direct comparison of the approximate model with data is not presented.

In most of the conforming rough data sets, such as Hegazy [25], experimental data show a

lower resistance at relatively light loads in comparison with the model and the data approach

the model as the load increases. This trend can be observed in almost all conforming rough data

sets (see Fig. 4-11). This phenomenon which is called the truncation effect [65] is important at

light loads when surfaces are relatively rough. A possible reason for this behavior is the Gaussian
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assumption of the surface asperities which implies that asperities with “infinite” heights exist.

Milanez et al. [65] experimentally studied the truncation effect and proposed correlations for

maximum asperities heights as functions of surface roughness.

If the external load increases beyond the elastic limit of the contacting bodies, elastoplastic

and plastic deformations occur. The plastic macrocontact radius, aP , is larger than the elastic

radius aL, i.e., aP > aL. Consequently, lower TCR will be measured; this trend can be clearly

seen in the Fisher [61] data sets “F,11A,Ni-CS”, see Fig. 4-11.

The accuracy of experimental data were reported by Antonetti [64], Fisher [61], and Hegazy

[25] to be 8.1, 5, and 7 percent, respectively. Unfortunately, the uncertainty of other researchers

data are not available. Because of the above-mentioned approximations to account for unre-

ported data, the accuracy of the full model is difficult to assess. However, the RMS and the

average absolute difference between the model and data are approximately 13.6% and 9.3%,

respectively. The RMS and the average absolute difference between the approximate model and

data are approximately 14.8% and 10.9%, respectively, as a result of choosing the constant in

Eq. (4.30) to be 1.57.

4.7 Criterion For Conforming Contacts

A criterion for determining a “flat surface” was derived in Chapter 3, implying that when the

effect of surface curvature on contact pressure distribution is negligible the surface is ideally flat.

It was shown that if the surface roughness and curvature are in the same order of magnitude,

i.e., δ/σ ∼ 1 with no load applied the macrocontact reaches the edge of the contacting bodies
and aL = bL.

From the TCR point of view, the conforming or flat contact can be defined as a contact in

which the macro thermal resistance RL is negligible. As discussed previously, surface curvature

has no effect on the micro thermal resistance (the approximate model). Thus, the effect of

surface curvature is limited to the macro thermal resistance, RL.

The macro thermal resistance is determined from Eq. (4.6), which can be re-written in the

non-dimensional form as,

R∗L = ksRLbL =
(1−B)1.5

2B
(4.34)
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Figure 4-12: Macro thermal resistance

where B = aL/bL ≤ 1. As shown in Fig. 4-12 the macro thermal resistance is zero at B = 1,

i.e. aL = bL (perfectly flat contacts), as B decreases from 1 to 0.8 the macro thermal resistance

increases from 0 to 0.05, this increase is relatively small and considered negligible. Therefore, a

criterion for the flat joint is proposed arbitrarily by setting B = 0.8, where the macro thermal

resistance is almost negligible. It should also be noted that for 0.8 ≤ B ≤ 1 (large radii of

curvature) the micro thermal resistance controls the joint resistance, see Fig 4-9.

A correlation for determining the macrocontact radius, aL, was proposed in Chapter 3 for

surfaces with relatively large radii of curvature, aL = 1.5 aH
√
α+ 0.45. Using this relationship,

one can write, B = 0.8 = 1.5 (aH/bL)
√
α+ 0.45. Substituting the non-dimensional parameter,

α = σρ/a2H and Eq. (4.2), we obtain,

σ

δ
= 2

"
0.28− 0.45

µ
aH
bL

¶2#
(4.35)

As can be seen from Eq. (4.35), the relative out-of-flatness is a function of aH/bL which contains

the applied load, the elastic properties, and the geometry of the contacting bodies. As shown
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in Fig. 3-11, an increase in surface roughness results in an increase in the macrocontact radius.

Setting B = aL/bL = 0.8, depending on the level of surface roughness a range for aH/bL can

be estimated, approximately 0.7 ≤ aH/aL ≤ 0.96, which results in, 0.56 ≤ aH/bL ≤ 0.77. This
range means that the increase in the macrocontact radius (compared to the smooth Hertzian

radius) is within a 5 to 30 percent increase. It is a reasonable estimate, noting that we are

investigating the contact of surfaces with relatively large radii of curvature under light loads.

Combining Eq. (4.35) and the above-mentioned range for aH/bL, a range for δ/σ can be

found for flat contacts, approximately 3 ≤ δ/σ ≤ 30 from very rough to very smooth surfaces,

respectively.

4.8 Summary and Conclusions

TCR of non-conforming rough surfaces was considered as the superposition of macro and micro

thermal resistance components accounting for the effects of surface curvature and roughness,

respectively.

The results of the mechanical model presented in Chapter 3, i.e., the local mean separation,

the local mean radius and the number of microcontacts, were used to develop an analytical

thermal model for determining TCR of non-conforming rough contacts in a vacuum. The

thermal model was constructed based on the premise that the mean separation between the

contacting surfaces in an infinitesimal surface element can be assumed constant. Therefore,

the conforming rough model of Cooper et al. [7] could be implemented to calculate the surface

element thermal resistance. The surface element thermal resistances were integrated over the

macrocontact area to calculate the effective micro thermal resistance of the contact. The

macrocontact resistance was calculated using the flux tube solution.

The effects of the major contact parameters, i.e., roughness, load, and radius of curvature on

TCR were investigated. It was shown that there is a value of surface roughness that minimizes

TCR. Additionally, at large loads the effect of roughness on the TCR becomes negligible.

By using the general pressure distribution introduced in Chapter 3 and the Yovanovich [8]

correlation for thermal conductance of conforming rough contacts, we derived simple correla-

tions for determining TCR which cover the entire range of TCR from conforming rough to
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smooth spherical contacts. The input parameters to utilize the proposed correlations are: load

F , the effective elasticity modulus E0, Vickers microhardness correlation coefficients c1 and c2,

effective surface roughness σ and surface slope m, the effective surface out-of-flatness δ or ra-

dius of curvature ρ, radius of the contacting surfaces bL, and the harmonic mean of the thermal

conductivities ks.

It was shown that the micro thermal resistance Rs is independent of the surface curvature

and the profile of the contact pressure by introducing an approximate model for the micro

thermal resistance. Additionally, the micro and the macro thermal resistances are functions of

the micro and macro scale contact parameters, respectively. The applied load appears directly

in both resistances; the surface roughness influences the macro thermal resistance implicitly

through the macrocontact radius.

The thermal model was compared with more than 600 experimental data points and showed

good agreement over the entire range of TCR. The RMS difference between the model and the

data was estimated to be approximately 13.6%. The list of materials in the comparison formed

a complete set of the metals used in applications, where TCR is of concern. It was also shown

that the present model is applicable to dissimilar metals.

A criterion for specifying the conforming rough contact was developed. A contact is con-

forming where the equivalent surface out-of-flatness is approximately between 3 to 30 times of

the equivalent surface roughness for very rough to very smooth surfaces, respectively.
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Chapter 5

A Scale Analysis Approach to TCR

5.1 Scope

In this Chapter, a new model is developed for predicting thermal contact resistance (TCR)

of non-conforming rough joints of bare solids in a vacuum. Instead of using probability rela-

tionships that are used in Chapter 4 to calculate the mean size and number of microcontacts,

Cooper et al. model [7], a novel approach is taken by employing the “scale analysis method”.

The main objective of this approach is to develop a simplified model that is easy to use and

does not sacrifice accuracy. Based on the known characteristics and deformation mechanisms

of rough surfaces, a scale relationship is developed. The scale relationship satisfies the ob-

served physical proportionality and shows the trend of the experimental data. The constant

of the scale relationship is then determined through comparison with experimental data. This

is an example to demonstrate the power of scale analysis methods. In other words, TCR is

determined without knowing the “exact” size and number of microcontacts.

It is shown that the geometry of heat sources on a half-space for microcontacts is justifiable

for an applicable range of contact pressure. Also, it is shown that the surface curvature and

contact pressure distribution have no effect on the effective micro thermal resistance. The

present model allows one to predict TCR over the entire range of non-conforming joints from

conforming rough to smooth Hertzian. A new non-dimensional parameter, i.e., ratio of the

macro over micro thermal resistances, is introduced as a criterion to identify three regions of

TCR.
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The proposed model shows excellent agreement with the collected TCR data for SS 304.

Additionally more than 880 experimental data points, collected by many researchers, are sum-

marized and compared with the present model and good agreement is observed.

5.2 Introduction

According to the examination of the microgeometry of rough surfaces, surface asperities have

small slopes and curved shapes at their summits [20, 15]. It is a common methodology to

simplify the contact of two Gaussian rough surfaces by the contact of a smooth plane with a

random rough surface which has equivalent surface characteristics.

Cooper et al. [7] proved that the microcontacts can be assumed isothermal provided the

thermal conductivity in each body is independent of direction, position and temperature.

As discussed in Chapter 4, the real shapes of microcontacts can be a wide variety of singly

connected areas depending on the local profile of the contacting asperities. Yovanovich et al.

[52] showed that the real shape of the microcontacts is a second order effect and an equivalent

circular contact, which has the same area, can represent the microcontacts.

As shown in Fig. 5-1, there are two geometries that can be used as basic elements to model

the thermal constriction/spreading resistance of the microcontacts, i) heat source on a half-

space in which microcontacts are assumed to be located far from each other, where thermal

constriction/spreading resistance can be found from [3]

Rmic, half-space =
1

2ksas
(5.1)

where as and ks are the radius of the microcontact spot and the harmonic mean of thermal

conductivities of contacting bodies and ii) the flux tube geometry, considering the effect of

neighboring microcontacts. Cooper et al. [7] proposed a simple accurate correlation for deter-

mining the flux tube constriction/spreading resistance,

Rmic, flux tube =
ψ (εs)

2ksas
(5.2)

where ψ (εs) = (1− εs)
1.5 and εs = as/bs.
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Figure 5-1: Geometry of spherical rough contact in vacuum, heat source on half-space, and flux
tube geometry

Using the flux tube correlation, Eq. (5.2), and neglecting the effect of surface roughness,

the joint resistance for the smooth sphere-flat contact, i.e., elastoconstriction limit [63] can be

determined from

Rj, EC =
(1− aH/bL)1.5

2ksaH
(5.3)

Comparison between the elastoconstriction model, i.e., Eq. (5.3) and the smooth sphere-flat

experimental data shows good agreement, see Chapter 2, thus the flux tube solution can be

employed for determining the macro thermal resistance.

5.3 Macro and Micro Thermal Resistances

As illustrated in Fig. 5-2, when the heat flow rate Q is transferred from a heat source at Tsource

to a heat sink at Tsink, it experiences the macro thermal constrictions RL,1 and RL,2 that arose

due to the macrocontact area. Then, heat passes through ns microcontacts in the contact plane,

which is called the effective microcontact resistance, Rs. The total thermal joint resistance of
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a non-conforming rough joint in a vacuum can be written as

Rj = RL +Rs (5.4)

where RL = RL,1 +RL,2, Rs = Rs,1 +Rs,2, and

1

Rs, 1 or 2
=

nsX 1

Rmic, 1 or 2

where Rmic, 1 or 2 is the sum of thermal constriction and spreading resistances of a single micro-

contact in body 1 or 2.

Equation (5.4) is a general expression and applicable to all spherical rough contacts and it
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was used by many researchers such as Clausing and Chao [4], Nishino et al. [5], and Lambert

and Fletcher [6]. A proof of Eq. (5.4) is given as follows. Assuming circular isothermal

microcontacts, at Tc, that have a mean radius (in the order of as ∼ µm), isothermal planes must

exist at intermediate temperatures Ti,1 and Ti,2, i.e., Tsource < Ti,1 < Tc < Ti,2 < Tsink at some

location l above/below the contact plane in body 1 and 2, respectively. If the microcontacts are

considered as heat sources on a half-space the distance between these intermediate isothermal

planes and the contact plane l = 40as ∼ 40 µm [72]. As microcontacts grow in size and

number, they start to affect each other (the flux tube geometry) and l decreases, l ∼ bs [14].

Consequently, macro thermal constriction/spreading resistances RL,1 and RL,2 are in series

between the heat source and the isothermal plane Ti,1 and the isothermal plane Ti,2 and the heat

sink, respectively. Also microcontacts provide ns parallel paths for transferring heat between

two isothermal planes Ti,1 and Ti,2.

Two limiting cases can be distinguished for Eq. (5.4), i) the conforming rough limit, i.e.,

contact of flat rough surfaces where the surface curvatures are very large thus macro thermal

resistance RL is negligible and micro thermal resistance Rs is the controlling part, ii) the

elastoconstriction limit where the radii of curvature of contacting bodies are small and surfaces

are smooth, thus the macro thermal resistance RL is predominant and Rs is negligible, and iii)

transition region or general contact in which both RL and Rs exist and have the same order

of magnitude. Figure 5-2 shows the above-mentioned regions and their corresponding thermal

resistance networks. Later, a non-dimensional parameter will be introduced and a criteria will

be proposed to specify these limits.

5.4 The Scale Model

Due to the random nature of the surface roughness, studying the deformation and heat transfer

of each single asperity is impossible, as a result a representative (modeled) asperity is chosen

and studied. Surface roughness is modeled by assuming a Gaussian distribution of asperities.

The RMS surface roughness σ is a measure for the mean surface asperity heights.

In this section, using scale analysis, first an expression is derived for TCR of conforming

rough contacts, Rs. Then, the non-conforming macrocontact area is divided into infinitesimal
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Figure 5-3: Proportionalities between microcontact size and surface slope and roughness

surface elements where the conforming rough model relation can be applied. By integrating the

local conductance over the macrocontact, an effective microcontact resistanceRs is found. Using

the flux tube correlation, the macrocontact resistance RL is computed. Finally, superimposing

the macro and micro thermal resistances using Eq. (5.4), the joint resistance is determined.

5.4.1 TCR of the Conforming Rough Limit

Surface roughness can be visualized as shallow valleys and hills with small slopes where asperities

have spherical shapes at their summits. Figure 5-3 illustrates a model asperity, which represents

the equivalent rough surface characteristics σ and m, placed in contact with a smooth plate

at a mean separation Y 0. Using the equivalent rough surface simplification and considering the

fact that the mean surface slope, m, is small, the microcontacts are flat and in the same contact

plane. As discussed previously, the shape of microcontacts can be assumed circular. Figure

5-3 also illustrates proportionalities between the mean microcontact radius as and the surface

roughness σ and slope m. As surface slope slightly decreases from m to m − δm, while the

roughness σ and Y 0 are held constant, the mean radius of microcontacts increases and vice versa,

thus one can write as ∝ 1/m. Following the same method for surface roughness, we obtain as ∝
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σ. Combining the above proportionalities, the mean radius of the microcontacts is proportional

to the surface roughness and inversely proportional to the surface slope, i.e., as ∝ σ/m. This

relationship can also be derived from the geometry of a representative microcontact. Figure 5-4

shows half of a microcontact. In triangles 4OBD and 4ABC, one can write AC ∝ OD from

similar triangles. But we know that AC = as and OD = L = σ/m which leads to as ∝ σ/m.

Considering ns circular microcontacts with the mean radius of as within the macrocontact area,

the real contact area is, Ar ∝ πnsa
2
s ∝ πns (σ/m)

2.

The microcontacts are assumed to deform plastically, i.e., each microcontact can be visu-

alized as a small microhardness indenter. The empirical correlation proposed by Yovanovich

and Hegazy [73], is used to estimate the microhardness. Preserving the microcontact area,

i.e., Av = πa2s, where Av is the projected area of the Vickers microhardness test, the Vickers

indentation diagonal dv can be related to the mean radius of microcontacts as, dv =
√
2πas,

microhardness becomes,

Hmic ∝ H∗ ≡ c1
µ

σ

mσ0

¶c2
(5.5)

Assuming plastic deformation of microcontacts, the external force can be related to the real

contact area and surface microhardness through a force balance,

F = ArHmic ∝ πns

³ σ
m

´2
H∗ (5.6)

where Hmic is the microhardness of the softer material in contact. From Eq. (5.6) the number
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of microcontacts can be determined

ns ∝ F

π (σ/m)2H∗
(5.7)

It can be seen from Eq. (5.7) that an increase in load creates new microcontacts while the mean

size of microcontacts remains constant, i.e., as ∝ σ/m. This is in agreement with Greenwood

and Williamson [1] and also satisfies the proportionality Ar ∝ F reported by Tabor [2].
The thermal model is based on the premise that ns heat channels, covering the nominal

contact area, form a set of parallel paths for transferring heat flow. If the half-space assumption

is considered, see Fig. 5-1-b, TCR can be found from,

Rs, half-space =
1

2ksnsas
∝ 1

2ksns (σ/m)
(5.8)

Many researchers including Cooper et al. [7] modeled the micro thermal constriction/spreading

resistance using the flux tube geometry, thus TCR is,

Rs, flux tube =
ψ (εs)

2ksnsas
∝ ψ (εs)

2ksns (σ/m)
(5.9)

where ψ (·) is the constriction alleviation factor given in Eq. (5.2). The apparent contact area
is covered by flux tubes with a mean radius bs, the relative size of microcontacts can be found

from, εs = as/bs =
p
Ar/Aa, where Aa = πb2L. Substituting Ar and Aa one obtains

εs ∝
r
F/πb2L
H∗

≡
√
P ∗ (5.10)

where P ∗ is a non-dimensional parameter that can be interpreted as the ratio of the nominal

contact pressure to the pressure at the microcontacts. The number of microcontacts can be

written in terms of P ∗ by re-arranging Eq.(5.7)

ns ∝ b2L
(σ/m)2

P ∗ (5.11)

We find the TCR for conforming rough surfaces by using the non-dimensional parameter P ∗
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and the flux tube solution

Rs, flux tube ∝
(σ/m)

³
1−√P ∗

´1.5
2ks b2L P

∗ (5.12)

or in the non-dimensional form

R∗s, flux tube = 2ksLRs ∝
³
1−√P ∗

´1.5
P ∗

(5.13)

where L = b2L/ (σ/m) is the conforming rough limit length scale. The TCR for conforming

rough surfaces, using the heat source on a half-space solution, can be found by substituting Eq.

(5.11) into Eq. (5.8)

R∗s, half-space ∝
1

P ∗
(5.14)

Figure 5-5 shows the comparison between Eqs. (5.13) and (5.14). It can be seen that over a wide

range of P ∗ they are almost identical and show very good agreement. However, as expected,

at relatively large values of P ∗ the half-space relationship, Eq. (5.14), shows slightly higher
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resistances than the flux tube. The RMS relative difference between two relationships is less

than 4 percent. Therefore, the microcontacts can be modeled as heat sources on a half-space

and Eq. (5.14) is chosen for thermal analysis of microcontacts.

Using these powerful scale analysis techniques, we derived Eq. (5.14) which illustrates that

the TCR of microcontacts is inversely proportional to the dimensionless pressure (or external

load). To find the equality or exact relationship, Eq. (5.14) must be multiplied by the scale

analysis constant, c, which can be found through comparison with experimental data, i.e.,

R∗s =
c

P ∗
(5.15)

The dimensional forms of thermal resistance and conductance using hs = 1/ (RsAa), are

Rs =
πc (σ/m)H∗

2ksF

hs =
2

πc
ks

³m
σ

´ P

H∗
(5.16)

where c and P = F/
¡
πb2L

¢
are the scale analysis constant, and nominal contact pressure,

respectively. From Eqs. (5.16) and (5.6), it can be seen that the effective micro thermal

resistance is inversely proportional to the real contact area, i.e., Rs ∝ (σ/m) / (ksAr) .
Approximately 610 experimental data points collected by Antonetti [64], Hegazy [25], Mi-

lanez et al. [65], McWaid [74], and Nho [75] are summarized, non-dimensionalized, and plotted

along with Eq. (5.15) in Fig. 5-6 with c = 0.36. Minimizing the RMS difference between the

model, Eq. (5.15), and the experimental data, the constant of the scale analysis c was found

to be c = 0.36. The relative RMS and the mean absolute difference between the data and

the relationship are 14.1% and 10.9%, respectively. Table 5.1 indicates the researchers and the

specimen materials used in the experiments. Appendix A lists the data set number, the num-

ber which was originally assigned to the experimental data set by the researchers, geometrical,

mechanical, average contact temperature, and thermophysical properties of the experimental

data, as reported.

Nho [75] studied the contact of ground with lapped surfaces. He showed that the grinding

process generates near-Gaussian surface heights distributions. The surface slope was estimated
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Table 5.1: Researchers and specimen materials used in comparisons

Ref. Researcher Material(s)

A Antonetti [64]
½
Ni 200
Ni 200-Ag

Blo Bloom [76] SS 17-4 PH
B Burde [26] SPS 245, CS

CC Clausing and Chao [59]


Al 2024 T4
Brass Anaconda
Mg AZ 31B
SS303

CM Cassidy and Mark [77] SS 416
F Fisher [61] Ni 200-Carbon Steel

FG Fletcher and Gyorog [78]


Brass 360
Mg Az 31B
SS 304

G Gyorog [79] SS 304

H Hegazy [25]


Ni 200
SS 304
Zircaloy 4
Zr-2.5%wt Nb

K Kitscha [60] Steel 1020-CS
MM McMillan and Mikic [71] SS 303
MR Mikic and Rohsenow [14] SS 305
M Milanez et al. [65] SS 304
MW McWaid [74] SS 304

N Nho [75]


Al 6061 T6
Ni 200
SS 304
Ni¿ Al

SG Smuda and Gyorog [80] SS 304
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from the geometric mean m =
√
mminmmax, where mmin and mmax are the minimum and max-

imum surface slopes measured by the profilometer. Nho carried out an extensive experimental

program on the heat flow directional effect on similar and dissimilar metal, i.e., aluminum alloy

6061-T6, nickel 200, and SS 304 pairs over a broad range of thermophysical properties and con-

tact pressure. Nho’s data are named to show the heat flow direction and the surface preparation

method, for example “N, Ni200-G,Al6061T6-L” means that the experiment was conducted be-

tween ground nickel 200 and lapped aluminium 6061T6 and the heat flow direction was from

nickel to aluminium specimen. As can be seen in Fig. 5-6, data show a negligible directional

effect for similar metals. Additionally, the directional effect is not observed in dissimilar metals

whenever the thermal conductivities of the pair are close, for example nickel 200 and aluminium

6061T6, but for pairs with significantly different thermal conductivities such as nickel 200 and

SS 304 a large deviation from the predicted TCR is observed; those data are not included in

the comparison.

As can be observed in Fig. 5-6, a common trend can be recognized in most of the conforming

rough data sets. Experimental data show a lower resistance at relatively light loads compared

with the model; the data approach the model as the load increases. As previously mentioned in

Chapter 4, this phenomenon which is called the truncation effect [65], and it is important at light

loads when surfaces are relatively rough. A possible explanation for this trend is the Gaussian

assumption of the surface asperities which implies that asperities with “infinite” heights exist.

Yovanovich [8] proposed an accurate correlation for determining the thermal conductance

of conforming rough contacts based on the analytical model of Cooper et al. [7]

hc = 1.25ks

³m
σ

´µ P

Hmic

¶0.95
(5.17)

Comparison of Eq. (5.16) with c = 0.36 and Eq. (5.17) reveals that the present model and

Yovanovich [8] correlation are in good agreement over moderate and high loads, 1 × 10−4 ≤
P/Hmic ≤ 2 × 10−2; for relatively light loads, P/Hmic ≤ 1 × 10−4, Eq. (5.16) predicts higher
resistances.
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5.4.2 General Model

In Chapter 3, a simple correlation was proposed for calculating the radius of the macrocontact

as a function of two non-dimensional parameters, Eq. (3.30)

aL = 1.80 aH

√
α+ 0.31τ0.056

τ0.028
(5.18)

where α = σρ/a2H and τ = ρ/aH are the roughness parameter introduced by Johnson [20] and

the geometric parameter, respectively.

The thermal macro resistance can be found by using the flux tube correlation, Eq. (5.2),

and the radius of the macrocontact area given by Eq. (5.18)

RL =
(1− aL/bL)1.5

2ksaL
(5.19)

In Eq. (5.19), it is assumed that the radii of two contacting bodies are the same, i.e., bL,1 =

bL,2 = bL. In the general case where bL,1 6= bL,2, thermal spreading resistance will be, R =

ψ (a/b) /4ka.

The macrocontact area is a circle, thus the heat transferred in a non-conforming rough

contact under vacuum conditions can be calculated from,

Q = 2π∆Ts

Z aL

0
hs (r) rdr (5.20)

where hs (r) , ∆Ts = Ti,1−Ti,2 are the local thermal conductance, and the effective temperature
difference for microcontacts, respectively. The effective micro thermal conductance for a joint

can be defined as hs = Q/ (Aa∆Ts). Therefore, the effective microcontact thermal resistance,

where R = 1/ (hAa) is,

Rs =
1

2π

·Z aL

0
hs (r) rdr

¸−1
(5.21)

Assuming constant pressure in the surface elements dr, one can calculate the local thermal

conductance at r from Eq. (5.16)

hs (r) =
2

cπ
ks

³m
σ

´ P (r)
H∗

(5.22)
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where P (r) is the local contact pressure at r. Substituting Eq. (5.22) into Eq. (5.21), one

obtains

Rs =
cH∗ (σ/m)

4ks

·Z aL

0
P (r) rdr

¸−1
(5.23)

From a force balance, we know that F = 2π
R aL
0 P (r) rdr, therefore Eq. (5.23) simplifies to

Rs =
cπH∗ (σ/m)

2ksF
(5.24)

Equations (5.16) and (5.24) are identical which implies that the effective thermal micro resis-

tance Rs is not a function of the surface curvature. Additionally, the pressure distribution profile

does not affect the thermal micro resistance. Through experiments, it can be observed that

the joint resistance Rj increases as surface curvature decreases from the conforming (ρ→∞)
toward non-conforming contacts. This increase arises due to the formation of the macrocontact

area and consequently the macro resistance RL. It should be noted that the effective micro

thermal resistance Rs remains unchanged as surface curvature varies, Eq. (5.24).

By superimposing the macro and the micro resistances, Eq. (5.4), the thermal joint resis-

tance for a general contact is obtained

Rj =
0.565H∗ (σ/m)

ksF
+
(1− aL/bL)1.5

2ksaL
(5.25)

From Eq. (5.25) one can conclude that i) the effective micro thermal resistance, except for the

thermal conductivity, is only a function of the contact micro-scale characteristics, i.e., surface

roughness σ, slope m, microhardness H∗, and the load F , ii) on the other hand, the macro

thermal resistance is a function of the macro-scale contact parameters, the macrocontact radius

aL, and size of the contacting bodies bL. The macrocontact radius is a function of the effective

elasticity modulus E0, radius of curvature ρ, surface roughness σ, and the load F , Eq. (5.18).

The applied load and the surface roughness appear to play important roles in both macro

and micro thermal resistances. The effect of surface roughness on the macro resistance is limited

to the macrocontact radius, aL. The applied load is the connecting bridge between the macro

and micro mechanical analyses, since the force balance must be satisfied in both analyses.

Equation (5.25) is a general relationship that covers both limiting cases and the transition
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region. It can be easily seen that in the conforming rough limit, where aL → bL the macro

resistance RL → 0 and Eq. (5.25) yields Eq. (5.16). Also, in the elastoconstriction limit, where

σ → 0 the micro resistance Rs → 0 and aL → aH and Eq. (5.25) is reduced to Eq. (5.3).

Dividing both sides of Eq. (5.25) by Rs, one obtains

1.77ksF

H∗ (σ/m)
Rj = 1 +Θ (5.26)

where Θ is the ratio of the macro to micro thermal resistances

Θ =
F (1− aL/bL)1.5
1.13H∗ (σ/m) aL

(5.27)

Θ is a non-dimensional parameter which includes the applied load, macro and micro geometrical

parameters, i.e., σ, m, ρ, and bL as well as the elastic and plastic mechanical properties of the

contacting bodies, E0 and H∗. Based on this non-dimensional parameter, a criterion can be

defined for the elastoconstriction and conforming rough limits Θ¿ 1 conforming rough

ΘÀ 1 elastoconstriction
(5.28)

As expected, Θ is independent of the thermal conductivity.

Equation (5.25) can be non-dimensionalized with respect to the conforming rough limit

length scale L and re-written,

R∗j = 2ksLRj =
0.36

P ∗
+
L (1− aL/bL)1.5

aL
(5.29)

where L = b2L/ (σ/m) and P
∗ = F/

¡
πb2LH

∗¢ .
5.5 Comparison With Experimental Data

To verify the general model developed in this Chapter, an experimental program was designed

and conducted to obtain data for non-conforming rough contacts in a vacuum. Test procedure

and experimental results are shown in Chapter 6. Three sets of experimental data are collected
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that cover the transition region. The collected data show excellent agreement with the model,

Eq. (5.29).

Additionally, approximately 260 experimental data points collected by Burde [51], Bloom

[76], Cassidy and Mark [77], Clausing and Chao [59], Fisher [61], Fletcher and Gyorog [78],

Gyorog [79], Kitscha [60], McMillan and Mikic [71], Mikic and Rohsenow [14], and Smuda and

Gyorog [80] are summarized through a comprehensive literature review. The non-dimensional

roughness parameter, α = σρ/a2H , is an important mechanical parameter for the spherical

rough contacts. As the roughness parameter approaches zero the contact pressure and the

macrocontact radius approaches the Hertzian values. The roughness parameter may be reduced

by i) increasing load ii) decreasing surface roughness, and iii) decreasing the radius of curvature.

Figure 5-7 summarizes the range of the roughness parameter for the experimental data used in

the comparison. As shown, the above data sets cover a wide range of the roughness parameter.

The collected data were non-dimensionalized and compared with the model, Eq. (5.26), in

Fig. 5-8. The three regions of TCR are also shown in the plot. The present model illustrates

good agreement with the data; the RMS and mean absolute relative difference between the

model and data are approximately 11.7% and 9.4%, respectively. Table 5.1 lists the researchers

and the specimen materials used in the experiments. Appendix A lists the data set number,

the number which was originally assigned to the experimental data set by the researchers,

geometrical, mechanical, average contact temperature, and thermophysical properties of the

experimental data, as reported.

As the external load increases beyond the elastic limit of the contacting bodies, elastoplastic

and plastic deformations may occur. The plastic macrocontact radius, aP , is larger than the

radius aL (elastic), i.e., aP > aL. Consequently, lower TCR will be measured; this trend can

be clearly seen in the Fisher [61] data set “F,11A,Ni200-CS”, see Figs. 5-8 and 5-9.

More than 880 experimental data points, data sets used in comparisons in Figs. 5-6 to 5-8,

are combined, non-dimensionalized, and compared with the present model, Eq. (5.29), in Fig.

5-9. The present model shows good agreement over the entire range of the comparison with the

experimental data, which cover a wide range of the input parameters, see Table 5.2.

The data include the contact between dissimilar metals such as Ni 200-Al 6061T6, Ni 200-Ag

and SS-CS. Additionally, the comparison includes the directional heat flow.
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α = σ ρ / a2
H

10-2 10-1 100 101

Burde (1977)

Clausing and Chao (1963)

Fisher (1985)

Kitscha (1982)

McMillan and Mikic (1970)

Smuda and Gyorog (1969)

Cassidy and Mark (1970)
Bloom (1964)

Gyorog (1970)

Fletcher and Gyorog (1968)

Mikic and Rohsenow (1966)

Bahrami (present study)

Figure 5-7: Range of roughness parameter α for experimental data used in comparison

Table 5.2: Range of parameters for experimental data

Parameter
7.15 ≤ bL ≤ 14.28 mm
25.64 ≤ E0 ≤ 114.0 GPa
7.72 ≤ F ≤ 16763.9 N
16.6 ≤ ks ≤ 227.2 W/mK
0.04 ≤ m ≤ 0.34
0.12 ≤ σ ≤ 13.94 µm
−60 ≤ Tc ≤ 195 ◦C
0.0127 ≤ ρ ≤ 120 m
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Figure 5-9: Comparison of general model with all data
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The surface slope m has not been reported by Clausing and Chao [59], Kitscha [60], Fisher

[60], and Mikic and Rohsenow [14] and were estimated using a correlation proposed by Lambert

and Fletcher [6], m = 0.076σ0.52, where σ is in micrometer, see Table 2.1. Because of the above-

mentioned approximation to account for unreported data, the accuracy of the model is difficult

to assess. However, the RMS and the mean absolute difference between the model and data for

the entire set of data are approximately 13.8% and 10.4%, respectively. A ±15 percent bound is
included in Fig. 5-9; 730 out of 880 data points fall into the ±15 percent bound. The accuracy
of experimental data were reported by some of researchers, such as Antonetti [64], Fisher [61],

and Hegazy [25] to be 8.1, 5, and 7 percent, respectively.

5.6 Summary and Conclusion

It was shown that the joint resistance was the superposition of the macro and micro thermal

resistances in a vacuum. Comparing the heat source on a half-space with the flux tube solutions

over a wide range of applicable load range, it was shown that the heat source on a half-space

assumption for the geometry of microcontacts was justifiable. In other words, microcontacts

were located far enough from each other that they did not interfere and could be considered as

heat sources on a half-space. In this Chapter, instead of using probability relationships, scale

analysis methods were used and a novel TCR model was developed for the conforming rough

contacts. The effective micro thermal resistance was observed to be inversely proportional to

the real contact area and directly proportional to the parameter (σ/m) .

The scale analysis relationship derived for the conforming rough contacts was integrated

over the macrocontact area to extend the scale analysis model to cover the general contact or

the transition region. It was shown that the effective micro thermal resistance component of the

joint resistance, Rs, was not a function of the surface curvature/out-of-flatness. Additionally,

the profile of the effective contact pressure distribution did not affect the effective micro thermal

resistance, Rs. Using the proposed correlation for the radius of the macrocontact in Chapter

3 and the flux tube correlation the macro thermal resistance was determined. Superimposing

the macro and the micro thermal resistances a general relationship for TCR was derived. This

expression covered the entire TCR ranging from the conforming rough to the spherical smooth
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bare joints in a vacuum.

A new non-dimensional parameter was introduced which represents the ratio of the macro

over the micro thermal resistances. Based on this non-dimensional parameter a criteria was

proposed for specifying the three regions of TCR, i.e., the conforming rough limit, the elasto-

constriction limit and the transition region.

The scale analysis model was compared with 75 data sets, more than 880 TCR data points

collected by many researchers during last 40 years, which cover a wide range of surface character-

istics, thermal and mechanical properties, mean contact temperature, directional heat transfer,

and contact between dissimilar metals. The RMS difference between the model and data was

approximately 13.8% over the entire range of the comparison.
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Chapter 6

Experimental Study

6.1 Experimental Apparatus

The experimental apparatus used in this study is the same as that used and described by

Mantelli [81]. The experimental apparatus was developed to fit inside the vacuum chamber.

Figure 6-1 shows a general view of the experimental apparatus. A brief description of each

component of the test apparatus is given below.

The test chamber consisted of a stainless steel base plate and a stainless steel bell jar

enclosing the test column. The test column consisted of, from top to bottom: the loading

mechanism, the heater block, the load cell, the smooth spherical sample, the flat rough specimen,

the Armco iron flux meter, and the heat sink (cold plate). A schematic sketch of test column

is shown in Fig. 6-2.

Two cylindrical specimens, 25 mm in diameter by 45 mm long, were held coaxially between

the heating block and the flux meter. The spherical sample was fitted into a 25 mm diameter

recess in a cylindrical brass heating block.

A Lebow 300 lbs load cell model 3397 was used to measure the applied load to the joint.

The load was applied over a load button placed in the center of the load cell. A DC excitation

voltage of 12 V was applied to the load cell and resulting sensitivity was 0.0397 mV/N.

The heater block consisted of circular flat copper in which two cylindrical Watlow 120V,

500 W pencil-type electrical heaters were installed. The power to the heaters could be adjusted

through an auto transformer.
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Figure 6-1: General view of test apparatus
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Figure 6-2: Schematic view of test column
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The cold plate consisted of a hollow copper cylinder, 5.08 cm high and 17.78 cm diameter,

cooling was accomplished using a closed loop water-glycol bath in which the coolant temperature

could be set. Flexible bellows were incorporated in the cooling flow lines inside the chamber to

facilitate the movement of the cold plate under loading.

6.2 Preparation of Test Specimens

Contact surfaces were prepared on the faces of 25 mm diameter by 45 mm long cylindrical

specimens. Both flat and spherical specimens were made of SS304, E = 207 GPa and ν = 0.3.

Samples were machined into cylindrical shapes of 25 mm diameter and 45 mm length. The

contact assembly included a bead-blasted flat specimen placed in contact with a smooth polished

spherical sample in series with an Armco iron flux meter in a vacuum chamber.

The experimental program was designed to study/cover the transition region where the

magnitude of the micro and the macro thermal resistances are comparable. As shown in Chap-

ters 4 and 5, a large number of reliable TCR data are available for the conforming rough and

the elastoconstriction limits, therefore no tests were conducted in these limiting regions. Two

radii of curvature were chosen for spherical samples, 0.45 and 0.95 m. Radii of curvature of

spherical samples were measured using a Mitutoyo BHN 305 coordinate measuring machine

(CMM) that was connected to a PC. The CMM machine has a probe, which enables one to

measure the coordinate and the surface curvature at any point on a spherical body. To find a

radius of curvature, 30 points were measured randomly over each spherical sample, the software

of the equipment then curve-fitted these points and calculated the radius of curvature that best

fitted the surface curvature. For each spherical sample, five separate radii of curvature were

measured and averaged to find a realistic radius of curvature. The maximum relative difference

between the average radii and the measurements is less than 3.5 percent. Table 6.1 shows the

radius of curvature measurements for spherical samples used in T1 to T3.

Flat specimens were first machined on a lathe and then finely ground to the required dimen-

sions. Next, flat samples were mechanically lapped. After mechanical lapping, the specimens

were carefully hand-lapped and cleaned. Some of the flat specimens (prepared by mechani-

cal and then hand lapping) were found to have out-of-flatness, approximately spherical, and
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Table 6.1: Surface radius of curvature measurements for spherical samples

Surface radius of curvature, ρ (m)
Measurement # T1 T2 T3

1 0.995 0.458 0.946
2 0.943 0.439 0.948
3 0.938 0.461 0.953
4 0.949 0.448 0.954
5 0.979 0.453 0.945

ρ = 0.946 ρ = 0.452 ρ = 0.961

were discarded. The flatness deviation of the flat specimens was checked using an optical

flat instrument. In general, the out-of-flatness deviations were less than 0.3 µm. The random

(Gaussian) roughness was created on the flat specimens by bead-blasting with two different

grades of glass beads. After this process, the roughened specimens were cleaned, and using a

Taylor-Hobson ST3Plus Talysurf profilometer, the surface roughness and slope of the flat sam-

ples were measured. Eight randomly selected traces of surface height profile were taken from

each bead-blasted specimen. Each trace was approximately 10 mm long. The RMS difference

between the mean values and the surface roughness and slope measurements is approximately

6 percent. Table 6.2 lists surface measurements for the flat surface that used in test T1 as an

example to show the procedure, the average surface roughness and asperity angle were σ = 2.04

µm and θ = 6.25 degree. The mean absolute surface slope m were calculated using,

m =

r
2

π
tan

¡
θ
¢

Both contact specimens and the flux meter were prepared for placement of six thermocouples

by drilling holes of 0.64mm diameter and 2.5mm deep. Copper-constantan thermocouples were

installed in the holes along the specimens, spot welded to the surface. Thermocouple wires were

wound once around the sample to reduce thermal conduction down the thermocouples leads as

a result of the thermal gradient between samples and the leads. Thermocouples were placed

along the samples length so that the temperature distribution within each section could be

determined. These thermocouples were located 5 mm apart with the first one 10 mm from the

contact surface, see Fig. 6-2. The thermal conductivity of Armco iron flux meter was known

and was used to measure the heat flow rate transferred through the contact.
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Table 6.2: Surface measurements for flat sample used in T1

θ asperity angle σ roughness % diff. roughness
degree µm 100× (σ − σ) /σ

6.21 1.91 -6.20
6.54 2.07 1.66
6.94 2.15 5.59
6.05 1.93 -5.22
5.54 1.86 -8.66
6.45 1.99 -2.27
6.29 2.12 4.11
5.98 2.26 10.99

θ = 6.25 σ = 2.04 RMS diff. = 6%

Also, separate tests were conducted to correlate thermal conductivity of SS 304 specimens

as a function of temperature. The temperature distributions within the flat and spherical

specimens were used to determine the contact temperature drop by extrapolating to the contact

plane.

6.3 Assembly and Test Procedure

The parts of test column were assembled as shown in Fig. 6-2. The load could be applied to

the test column via a lever system by adjusting a nut.

The overall thermal resistance measurements were made under steady-state conditions,

which were consider achieved when all temperatures had a variation less than 0.05 K in 3

minutes. At this condition, the variation of thermal resistance is negligible. The tempera-

tures were measured using type T (copper-constantan) thermocouples. The heater power was

controlled manually and kept constant for each data point. A Keithley Integra series 2701 Eth-

ernet multimeter/data acquisition system was used to acquire temperature and load readings

and transfer the data to a PC.

The following procedure was employed for all thermal resistance measurements. The data

acquisition system, computer, electrical heater, cooling system, and vacuum pump were powered

on and the computer program were executed. All test column interfaces were cleaned and

greased (except the test joint) with thermal grease to minimize the contact resistance at these

interfaces. Then, test specimens were positioned coaxially between the heater and the flux
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meter, and the test column was aligned visually to ensure that the column interfaces remained

aligned during the test. The first load was applied.

The test column was insulated with fiberglass insulation. The column was then covered

with an aluminum cylindrical shell to minimize the radiative heat loss. The input power to

electrical power adjusted. The ball jar was carefully lowered, and the test chamber was evacu-

ated using the mechanical pump. After reaching vacuum pressures to approximately 10−5 torr,

the diffusion pump was powered on and connected in series with the mechanical pump. The

vacuum process took approximately 8 to 10 hours. The temperature and pressure readings were

updated by the data acquisition system and displayed on the monitor every 3 minutes. When

the steady-state conditions were satisfied, the last experimental data were stored in a file. The

applied load and the electrical power were increased manually and after approximately 4 hours

a new steady-state condition was attained and another reading was obtained. The heater power

input was increased by increasing the applied load to maintain a relatively high temperature

drop across the joint. For experimental uncertainty analysis see Appendix B.

6.4 Test Results

6.4.1 Introduction

An experimental program was carried out under strictly controlled conditions using carefully

prepared and specified spherical flat specimens. Three sets of data were collected as indicated

by T1 to T3. The values chosen for radii of curvature, load, and surface roughness provides

TCR data over a relatively wide range of the transition region. The surface roughness and slope,

radius of curvature, microhardness coefficients, and average thermal conductivity for each test

are listed in Table 6.3. To verify the reproducibility of experiments, Test T3 was conducted

with the same radius of curvature and surface roughness of T1; new specimens were used over

a wider range of applied load compared to T1.
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Table 6.3: Geometric, mechanical, and thermal properties of tests

Parameter T1 T2 T3
σ (µm) 2.04 2.78 2.04
m 0.087 0.199 0.087
ρ (m) 0.95 0.45 0.95
c1 (GPa) 6.23 6.55 6.23
c2 -0.23 -0.12 -0.23
ks (W/mK) 18.23 18.82 18.46

6.4.2 Data Reduction

Thermal joint resistance under steady-state condition can be determined from

Rj =
∆T

Q
K/W (6.1)

where ∆T and Q are temperature drop across the joint and heat flow rate, respectively. The

temperature drop was determined by extrapolating the temperature distributions to the inter-

face, and compute the temperature difference between the extrapolated values. Since the heat

loss from the samples was negligible under vacuum conditions, the heat flow through the joint

was assumed to be identical to the Armco iron flux meter. The heat transferred through Armco

iron flux meter was determined using Fourier’s equation

Q = −kAdT/dz W (6.2)

where dT/dz is the temperature gradient along the flux meter and k is the thermal conductivity

of the Armco iron flux meter computed at the mean temperature using the following expression

k (W/mK) = −0.0677 T (◦C) + 79.832 (6.3)

where, the maximum relative difference between this expression and tabulated values [82] in

the range 30 to 100 ◦C was less than 3%.

Thermal conductivity of test samples was determined by correlating the conductivity data

obtained from separate tests. Thermal conductivities were determined from the temperature

gradient along the sample and was assigned to the mean specimen temperature. Having a series
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of thermal conductivities as a function of temperature, the SS 304 thermal conductivity were

curve fitted as,

kSS 304 (W/mK) = 0.0168 T (
◦C) + 17.346

with the maximum relative error of 2.29 percent in the range of 15 to 140◦C.

6.5 Experimental Data

Three experiment sets indicated by T1, T2, and T3 were obtained using 25 mm by 45 mm

cylindrical samples. Both spherical and flat samples are made from SS 304. Geometrical,

mechanical, and thermal properties of the tests are summarized in Table 6.3.

Tables 6.4 to 6.6 show the applied load, the roughness parameter α, the geometry parameter

τ , the relative macrocontact radius B = aL/bL, micro, macro, and the joint thermal resistance

predicted by the model, the non-dimensional parameter Θ = RL/Rs, the experimental data

Rexp, and the relative difference between the model and data for each data points of tests T1

to T3. The scale analysis model developed in Chapter 5, i.e., Eq. (5.25) was employed for

predicting the joint resistance Rj .

Figures 6-3 to 6-5 shows the comparison between the experimental data and the thermal

joint resistances predicted by the general model, Eq. (5.25), for tests T1 to T3.
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Table 6.4: Comparison between model and test result T1

F α τ B Rs RL Rj Θ Rexp
Rj−Rexp

Rj
%

N (−) (−) (−) K/W K/W K/W (−) K/W (−)
373.15 1.10 715.1 0.198 5.84 7.83 13.67 1.34 14.08 -3.0
495.33 0.91 650.7 0.204 4.41 7.53 11.94 1.71 12.19 -2.1
869.38 0.62 539.4 0.219 2.52 6.81 9.33 2.70 9.42 -1.0
1381.5 0.46 462.3 0.236 1.57 6.07 7.64 3.87 7.62 0.3
1740.9 0.39 427.9 0.245 1.22 5.60 6.82 4.60 6.71 1.6
2656.1 0.36 371.7 0.266 0.77 4.80 5.57 6.21 5.53 3.9

F (N)

TC
R

(K
/W

)

102 103 104100

101

102

T1 data
Rs
RL
model, Rj

micro thermal
resistance
Rs

macro thermal
resistance
RL

joint resistance
Rj = Rs + RL

Θ = 1.34
aL/ bL = 0.19

Θ = 6.21
aL/ bL = 0.27

Figure 6-3: Comparison between model and test result, T1
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Table 6.5: Comparison between model and test result T2

F α τ B Rs RL Rj Θ Rexp
Rj−Rexp

Rj
%

N (−) (−) (−) K/W K/W K/W (−) K/W (−)
210.9 1.71 527.1 0.152 9.34 11.12 20.46 1.19 21.50 -5.1
303.6 1.34 466.8 0.157 6.44 10.61 17.05 1.65 17.50 -2.6
445.7 1.04 410.8 0.162 4.41 10.17 14.58 2.31 13.80 5.3
883.6 0.66 326.9 0.176 2.20 9.04 11.25 4.11 10.90 3.1
1116.9 0.56 302.4 0.182 1.72 8.52 10.24 4.96 10.10 1.3
2577.4 0.32 228.9 0.210 0.73 6.86 7.59 9.42 7.10 6.5

F (N)

TC
R

(K
/W

)

102 103 104100

101

102

T2 data
Rs
RL
model, Rj

micro thermal
resistance
Rs

macro thermal
resistance
RL

joint resistance
Rj = Rs + RL

Θ = 1.19
aL/ bL = 0.15

Θ = 9.42
aL/ bL = 0.21

Figure 6-4: Comparison between model and test result, T2
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Table 6.6: Comparison between model and test result T3

F α τ B Rs RL Rj Θ Rexp
Rj−Rexp

Rj
%

N (−) (−) (−) K/W K/W K/W (−) K/W (−)
31.3 5.73 1634.4 0.169 71.85 9.89 81.74 0.14 79.90 2.3
55.6 3.90 1349.1 0.173 40.16 9.55 49.71 0.24 48.50 2.4
110.1 2.47 1074.2 0.179 20.15 9.06 29.21 0.45 29.60 -1.3
189.2 1.72 896.7 0.186 11.91 8.77 20.68 0.74 21.80 -5.4
409.3 1.03 693.4 0.200 5.36 7.76 13.12 1.45 13.80 -5.2
600.5 0.80 610.2 0.209 3.64 7.26 10.90 2.00 11.50 -5.5
795.8 0.66 555.6 0.217 2.74 6.88 9.63 2.51 9.70 -0.7
1110.2 0.53 497.2 0.227 1.97 6.42 8.38 3.26 7.90 5.8
1338.6 0.47 467.1 0.234 1.61 6.07 7.69 3.77 7.50 2.4
2561.5 0.30 376.3 0.264 0.84 5.05 5.89 6.04 5.80 1.5

F (N)

TC
R

(K
/W

)

101 102 103 104100

101

102

T3 data
Rs
RL
model, Rj

macro thermal
resistance
RL

micro thermal
resistance
Rs joint resistance

Rj = Rs + RL

Θ = 0.14
aL / bL = 0.17

Θ = 6.04
aL / bL = 0.26

Figure 6-5: Comparison between model and test result, T3
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Experimental data T1 to T3 were non-dimensionalized and compared with the model, Eq.

(5.29) in Fig. 6-6. The maximum relative difference between the model and the data is 6.84%;

the RMS difference between the model and data sets T1, T2, and T3 are 2.43, 4.13, and 3.84

percent, respectively.

The relative importance of the micro and macro thermal resistances (Θ) is also shown in

Fig. 6-6. For the data set T3, the ratio of aL/bL varies from 0.17 to 0.26 as the load increases

from 28 to 2561.5 N. The micro resistance becomes smaller and the macro resistance dominates

the joint resistance by increasing the load. Note that even at a relatively large load of 2561.5 N ,

the radius of the macrocontact area covers only 26 percent of samples radius bL. The spherical

specimen have large radii of curvature, e.g. ρ = 0.95 m or equivalently the maximum out-of-

flatness of 82 µm for T3. These samples seems flat and their surface curvatures can not be

detected by naked eye, yet surface curvatures cause a relatively large thermal resistance even

at high loads. This clearly shows the significance and impact of the surface curvature/out-of-

flatness on TCR.
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test σ m ρ c1 c2 ks

(µm) - (m) (GPa) - (W/mK)
T1 2.04 0.087 0.95 6.23 -0.23 18.83
T2 2.78 0.199 0.45 6.55 -0.12 18.82
T3 2.04 0.087 0.95 6.23 -0.23 18.46

T1 1.34 ≤ Θ ≤ 6.21
T2 1.13 ≤ Θ ≤ 8.96
T3 0.14 ≤ Θ ≤ 6.04

Figure 6-6: Comparison between T1-T3 data and present model
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Thermal contact resistance (TCR) of bare joints in a vacuum environment is studied analyti-

cally. A contact mechanics and two thermal models are proposed. The mechanical and thermal

models were verified through comparison with experimental data. The following conclusions

can be drawn:

1. The TCR modeling and its components are studied. The modeling process is divided into

three analyses: geometrical, mechanical, and thermal where each one includes a macro

and micro scale component.

2. Proposed empirical correlations to relate surface slopes, m, to surface roughness σ, are

summarized and compared with surface measurement data. The comparison shows that

the uncertainty of the correlations is high; use of these correlations is not recommended

unless only an estimation of m is required.

3. Greenwood and Williamson [1] elastic, Cooper et al. [7] and Tsukizoe and Kisakado

[35, 36] plastic conforming rough models are reviewed and a set of scale relationships are

derived for the contact parameters, i.e., the mean microcontact size, number of microcon-

tacts, density of the microcontacts, and the external load as functions of dimensionless

separation. These scale relationships are compared and it is graphically shown that despite

the different assumptions and input parameters, their behaviors in terms of the contact
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parameters are similar. It can be concluded from the comparison that the behavior of

contacting rough surfaces is determined essentially by surface statistical characteristics.

Also a combination of plastic and elastic modes would introduce no new features.

4. The common assumptions of the existing TCR analyses are summarized. Proposed corre-

lations by different researchers for the flux tube spreading resistance are compared. It is

observed that, at the limit, the correlations approach the heat source on a half-space solu-

tion. Also all the spreading resistance correlations show good agreement for the applicable

range.

5. More than 400 experimental data points collected by many researchers, are summarized

and grouped into two limiting cases: conforming rough, and elastoconstriction. These

data are non-dimensionalized and compared with existing TCR models at the two limiting

cases. It is shown that none of the existing theoretical models covers both of the preceding

limiting cases. This clearly shows the need to develop theoretical model(s) which can

predict TCR over all cases including the above mentioned limiting cases and the transition

range where both roughness and out-of-flatness are present and their effects on contact

resistance are of the same order.

6. The mechanical contact of spherical rough surfaces is studied and a new analytical model

is developed. The deformations of surface asperities are considered to be plastic and, the

bulk deformation is assumed to remain within the elastic limit.

7. A closed set of governing relationships is derived and solved numerically. A computer code

is developed to solve the governing relationships. The pressure distributions predicted by

the model are plotted for different values of surface roughness and it is shown that as

the surface roughness approaches zero the predicted pressure distribution approaches the

Hertzian pressure distribution.

8. Additionally, it is shown that a general pressure distribution profile exists that encom-

passes all spherical rough contacts. The maximum contact pressure is observed to be

the key parameter that specifies the contact pressure distribution. The proposed general

pressure distribution expression yields the Hertzian contact pressure at the limit, where
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surface roughness is set to zero.

9. The number of independent non-dimensional parameters that describe the maximum con-

tact pressure is determined to be three: the roughness α, the geometric τ , and the mi-

crohardness E0/Hmic parameters. The effect of the microhardness parameter E0/Hmic on

the maximum contact pressure is observed to be small and ignored. Compact correlations

are suggested for calculating the maximum contact pressure, compliance, and the radius

of the macrocontact area, as functions of roughness α, and geometric parameters τ . The

present model is compared with the existing model of Greenwood and Tripp [38] and the

same trend is observed. Also the macrocontact radius and compliance predicted by the

model are compared against experimental data collected by others and good agreement

is seen.

10. An expression for estimating the critical load is derived, where aL = bL. The Winkler

approximation is used to derive a relationship for the contact pressure distributions, where

the loads are higher than the critical load. This expression along with the above correlation

form a general pressure distribution that encompasses all possible contact cases ranging

from the smooth Hertzian to the conforming rough joints.

11. A criterion is offered to identify the flat surface, where the effect of surface curvature on the

contact pressure can be neglected. Based on this criterion, the surface can be considered

flat if the surface out-of-flatness and roughness are in the same order of magnitude.

12. The advantages of the present mechanical model over the Greenwood and Tripp [38] (GT)

model can be summarized as

• the present model requires two input surface parameters, roughness σ, and surface
slope m,

• the GT model needs three input parameters, i.e., σs,β, and ηs,

• unlike the summit radius β and the summit density ηs in the GT model, the present
model input parameters can be measured directly and they are not sensitive to the

surface measurements,
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• in the present model, a general pressure distribution profile is proposed that cov-
ers all possible contact cases simple correlations are proposed for determining the

maximum contact pressure and radius of the macrocontact area as functions of two

non-dimensional parameters, i.e., the roughness parameter α and the geometric pa-

rameter τ . But the GT model was proposed in the form of a set of governing

relationships that required computer programing and tedious iteration methods.

13. TCR of non-conforming rough surfaces is considered as the superposition of macro and

micro thermal resistance components accounting for the effects of surface curvature and

roughness, respectively.

14. The results of the mechanical model, i.e., the local mean separation, the local mean radius

and the number of the microcontacts, are used to develop an analytical thermal model

for determining TCR of non-conforming rough contacts in a vacuum. The thermal model

is constructed based on the premise that the mean separation between the contacting

surfaces in an infinitesimal surface element can be assumed constant. Therefore, the

conforming rough model of Cooper et al. [7] is implemented to calculate the surface

element thermal resistance. The surface element thermal resistances are integrated over

the macrocontact area to calculate the effective micro thermal resistance of the contact.

The macrocontact resistance is calculated using the flux tube solution.

15. The effects of the major contact parameters, i.e., roughness, load, and radius of curvature

on TCR are investigated. It is shown that there is a value of surface roughness that

minimizes TCR. Additionally, at large loads the effect of roughness on the TCR becomes

negligible.

16. By using the general pressure distribution and the Yovanovich [8] correlation for thermal

conductance of conforming rough contacts, simple correlations for determining TCR are

derived which cover the entire range of TCR from conforming rough to smooth spherical

contacts. The input parameters to utilize the proposed correlations are: load F , the

effective elasticity modulus E0, Vickers microhardness correlation coefficients c1 and c2,

effective surface roughness σ and surface slope m, the effective surface out-of-flatness δ
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or radius of curvature ρ, radius of the contacting surfaces bL, and the harmonic mean of

the thermal conductivities ks.

17. By introducing an approximate model for the micro thermal resistance, it is shown that

the micro thermal resistance Rs is independent of the surface curvature and the profile

of the contact pressure. Additionally, the micro and the macro thermal resistances are

functions of the micro and macro scale contact parameters, respectively. The applied load

appears directly in both resistances; the surface roughness influences the macro thermal

resistance implicitly through the macrocontact radius.

18. The thermal model is compared with more than 600 experimental data points, collected

by many researchers, and showed good agreement over the entire range of TCR. The RMS

difference between the model and the data is estimated to be approximately 13.6%. The

list of materials in the comparison forms a complete set of the metals used in applications,

where TCR is of concern. It is also shown that the model is applicable to dissimilar metals.

19. A criterion for specifying the conforming rough contact is developed. A contact is con-

forming where the equivalent surface out-of-flatness is approximately 3 to 30 times of the

equivalent surface roughness for very rough to very smooth surfaces, respectively.

20. It is shown that the heat source on a half-space assumption for the geometry of micro-

contacts is justifiable for a wide range of applicable loads. In other words, microcontacts

are located far enough from each other that they do not interfere and can be considered

as heat sources on a half-space. A novel TCR model was developed for the conforming

rough contacts using scale analysis methods instead of using probability relationships. The

scale relationship satisfied the observed physical proportionality and showed the trends

of the experimental data. The constant of the scale relationship was determined through

comparison with experimental data. Based on the model, the effective micro thermal

resistance is inversely proportional to the real contact area and directly proportional to

the parameter (σ/m) .

21. It is shown that the effective micro thermal resistance component of the joint resistance,

Rs, is not a function of the surface curvature/out-of-flatness. Additionally, the profile
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of the effective contact pressure distribution does not affect the effective micro thermal

resistance, Rs. Using the proposed correlation for the radius of the macrocontact and the

flux tube correlation, the macro thermal resistance is determined. Superimposing the

macro and the micro thermal resistances a general relationship for TCR is derived. This

expression covers the entire TCR ranging from the conforming rough to the spherical

smooth bare joints in a vacuum.

22. A new non-dimensional parameter is introduced which represents the ratio of the macro

over the micro thermal resistances. Based on this non-dimensional parameter a criteria

proposed for specifying the three regions of TCR, i.e., the conforming rough limit, the

elastoconstriction limit and the transition region.

23. An experimental program is designed and three sets of data for SS 304 are collected.

The collected data are compared with the scale analysis model and excellent agreement is

observed. In addition, the scale analysis model is compared with 75 data sets, more than

880 TCR data points collected by many researchers during last 40 years, which cover a

wide range of surface characteristics, thermal and mechanical properties, mean contact

temperature, directional heat transfer, and contact between dissimilar metals. The RMS

difference between the model and data is approximately 13.8% over the entire range of

the comparison.

7.2 Recommendations

1. Thermal models developed in this study predict TCR of conforming rough joints un-

der moderate and high pressures with a reasonable accuracy. However, as discussed in

Chapters 4 and 5, existing analytical TCR models including this work, over-predict joint

resistance of conforming rough contacts under light loads, i.e., the “truncation effect”. It

is recommended that further experimental and analytical work be done on the conforming

rough joints under light pressures.

2. The surface out-of-flatness of contacting bodies is considered to be spherical (convex) only

in this work. It is recommended to undertake more analytical and experimental study on
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the mechanical contact of surfaces that have other out-of-flatness shapes, such as wavy

surfaces.

3. A large group of engineering surfaces are cylindrical rough bodies; to the knowledge

of author no compact analytical contact mechanics model exists for cylindrical rough

contacts. The approach taken in developing of the mechanical model in this study can be

employed to develop compact analytical contact model(s) for cylindrical rough joints.

4. The mechanical model developed assumes that the contacting bodies are elastic half-

spaces, i.e., Boussinesq solution for a point load on a half-space is employed. This as-

sumptions is not valid for finite contacting bodies, where radius of the macrocontact area

approaches the edges of contacting bodies. In this study an approximate model is pro-

posed for this problem, which is called the elastic compression. It is recommended to study

this contact problem analytically and verify the accuracy of the proposed approximate

model.

5. There are a limited number of experimental TCR data for copper and silicon in the open

literature. Since these materials are very important in many thermal contact applications,

it is recommended to perform more tests with these materials and compare them with

the proposed model.
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Appendix A

TCR Data

This appendix contains the comparison between the present model, i.e., Eq. 5.25 and ex-

perimental data collected by other researchers. Table A.1 lists the researchers name and the

materials used in the experiments. The data are divided into two groups, non-conforming and

conforming contacts.

Geometrical, mechanical, and thermal properties of the data sets are summarized in Tables

A.2 and A.39. These Tables in conjunction with Table A.1 provide the following information:

1. test number, the number assigned to the experimental results for a particular specimen

pair

2. investigator(s) and publication reference

3. equivalent RMS surface roughness σ, mean absolute asperity slope m, and the effective

radius of curvature ρ

4. specimen designation, material type or alloy number, and specimen radius bL

5. mechanical and thermophysical properties, effective elasticity modulus E0, harmonic mean

of thermal conductivities ks, microhardness coefficients c1 and c2

6. mean joint (contact) temperature, Tc
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Table A.1: Researchers and Specimen materials used in comparisons
Ref. Researcher Material(s)

A Antonetti [64]
½
Ni 200
Ni 200-Ag

Blo Bloom [76] SS 17-4 PH
B Burde [51] SPS 245, CS

CC Clausing and Chao [59]


Al 2024 T4
Brass Anaconda
Mg AZ 31B
SS303

CM Cassidy and Mark [77] SS 416
F Fisher [61] Ni 200-Carbon Steel

FG Fletcher and Gyorog [78]


Brass 360
Mg Az 31B
SS 304

G Gyorog [79] SS 304

H Hegazy [25]


Ni 200
SS 304
Zircaloy 4
Zr-2.5%wt Nb

K Kitscha [60] Steel 1020-CS
MM McMillan and Mikic [71] SS 303
MR Mikic and Rohsenow [14] SS 305
M Milanez et al. [65] SS 304
MW McWaid [74] SS 304

N Nho [75]


Al 6061 T6
Ni 200
SS 304
Ni¿ Al

SG Smuda and Gyorog [80] SS 304
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A.1 Non-Conforming Contacts

Tables A.3 through A.38 provide the following information for TCR data points for the data

sets listed in Table A.2:

1. applied force, F

2. measured thermal contact resistance, Rexp

3. the non-dimensional roughness parameter, α = σρ/a2H

4. the non-dimensional geometric parameter, τ = ρ/aH

5. ratio of macrocontact radius over the radius of specimen, B = aL/bL

6. micro thermal resistance predicted by the model, Rs

Rs =
0.565 (σ/m)H∗

ksF

where H∗ ≡ c1 (σ/mσ0)
c2 .

7. macro thermal resistance predicted by the model, RL

RL =
(1− aL/bL)1.5

2ksaL

where,

aL = 1.80 aH

√
α+ 0.31τ0.056

τ0.028

where, aH = (0.75Fρ/E0)1/3 .

8. relative difference between the model and data.

157



Table A.2: Data information, non-conforming rough contacts

Reference, test # and E0 σ / m ρ c1 / c2 ks bL Tc
material GPa µm m GPa W/mK mm ◦C
Blo,SS17,4PH,513 107.69 2.71/.15 31.63 4.33/0 15.2 25.4 -60
Bur,A1,SPS245,CS 113.74 0.63/.04 0.0143 3.93/0 40.7 7.15 70
Bur,A2,SPS245-CS 113.74 1.31/.07 0.0143 3.92/0 40.7 7.15 70
Bur,A3,SPS245-CS 113.74 2.44/.22 0.0143 3.92/0 40.7 7.15 70
Bur,A4,SPS245-CS 113.74 2.56/.08 0.0191 4.44/0 40.7 7.15 70
Bur,A5,SPS245-CS 113.74 2.59/.10 0.0254 4.44/0 40.7 7.15 70
Bur,A6,SPS245-CS 113.74 2.58/.10 0.0381 4.44/0 40.7 7.15 70
CC,1A,Al2024T4 37.86 0.43/.06 13.80 1.72/-.04 136.8 12.7 104
CC,8A,Al2024T4 38.66 2.26/.14 14.66 1.73/-.04 141.4 12.7 110
CC,1B,Brass 49.62 0.47/.06 3.87 3.02/-.17 125.0 12.7 171
CC,2B,Brass 49.62 0.50/.06 4.07 3.02/-.17 125.0 12.7 129
CC,3B,Brass 51.92 0.50/.06 3.34 3.02/-.17 101.5 12.7 71
CC,4B,Brass 49.62 0.50/.06 4.07 3.02/-.17 125.0 12.7 127
CC,2M,MgAz31B 25.64 0.11/.03 30.32 0.41/0 96.0 12.7 100
CC,3M,MgAz31B 25.64 0.11-.03 12.41 0.41/0 96.0 12.7 100
CC,3S,SS303 113.74 0.11/.03 21.17 4.59/-.13 17.8 12.7 118
CM,SS416 106.04 1.26/ 13.44 2.62/0 24.9 12.7
F,11A,Ni200-CS 112.62 0.12/.04 0.0191 4.00/0 57.9 12.5 40
F,11B,Ni200-CS 112.62 0.12/.04 0.0381 4.00/0 57.9 12.5 40
F,13A,Ni200-CS 112.62 0.06/.03 0.0381 4.00/0 58.1 12.5 40
FG,P12,Brass360,T52 54.13 0.07/.02 28.91 1.08/0 107.0 12.7 52
FG,P34,Brass360,T94 53.56 2.21/.14 2.56 1.13/0 112.0 12.7 94
FG,P34,Brass360,T-10 55.84 2.21/.14 2.56 1.13/0 98.0 12.7 -10
FG,P51,MgAz31B,T90 23.36 0.16/.03 0.8077 0.47/0 88.0 12.7 90
FG,P51,MgAz31B,T-23 26.21 0.16/.03 0.8077 0.62/0 70.0 12.7 -23
FG,P34,SS304,T89 106.04 1.17/.10 9.62 2.06/0 15.9 12.7 89
FG,P34,SS304,T-33 106.04 1.17/.10 9.62 2.85/0 13.5 12.7 -33
FG,P67,SS304,T73 106.04 0.11/.03 0.4019 2.85/0 15.6 12.7 73
FG,P67,SS304,T160 106.04 0.11/.03 0.4019 2.85/0 16.6 12.7 160
G,SS304 106.04 0.79/.08 72.00 4.00/0 16.2 12.7 155
K,T1,Steel1020-CS 113.74 0.76/.08 0.0130 4.00/0 48.0 12.7
K,T2,Steel1020-CS 113.74 0.13/.03 0.0130 4.00/0 51.4 12.7
MM,P1,SS303 113.74 2.70/.07 0.1180 4.00/0 17.3 12.7
MM,P2,SS303 113.74 1.75/.07 2.44 4.00/0 22.0 12.7
MR,T2,SS305 107.14 3.87/.21 39.69 4.2/0 19.9 12.7
SG,SS304 106.04 0.14/.03 70.74 4.00/0 16.2 12.7 143
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Table A.3: Comparison between model and data, Bloom SS17 4PH513

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
9167.35 0.49 0.54 2502.2 0.726 0.32 0.26 0.57 0.81 14.53
12590.67 0.43 0.44 2251.0 0.766 0.23 0.19 0.42 0.83 -1.82
13079.13 0.42 0.42 2222.7 0.772 0.22 0.18 0.40 0.83 -4.91
1775.50 1.74 1.61 4324.7 0.594 1.63 0.56 2.19 0.35 20.70
978.96 2.86 2.39 5274.1 0.568 2.95 0.65 3.60 0.22 20.62
488.47 5.76 3.80 6649.5 0.547 5.92 0.72 6.64 0.12 13.30
3648.29 1.28 0.99 3401.8 0.639 0.79 0.44 1.23 0.55 -3.76
6135.21 0.80 0.70 2860.6 0.683 0.47 0.34 0.81 0.72 1.50
8804.55 0.58 0.55 2536.1 0.721 0.33 0.26 0.59 0.80 1.54
12142.74 0.47 0.45 2278.4 0.762 0.24 0.20 0.44 0.83 -8.27
13121.70 0.45 0.42 2220.3 0.772 0.22 0.18 0.40 0.83 -11.80

Table A.4: Comparison between model and data, Burde Assembly1

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
26.1 81.61 0.49 105.9 0.028 36.20 58.40 94.60 1.61 13.73
42.8 69.37 0.35 89.8 0.031 22.07 53.53 75.61 2.43 8.25
75.1 60.14 0.24 74.5 0.034 12.58 47.69 60.27 3.79 0.21
146.3 48.44 0.16 59.6 0.040 6.46 40.67 47.12 6.30 -2.79
360 37.00 0.09 44.2 0.050 2.62 31.70 34.32 12.08 -7.81
690.4 30.57 0.06 35.5 0.060 1.37 25.93 27.30 18.95 -11.99

Table A.5: Comparison between model and data, Burde Assembly2

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
26.1 72.81 1.02 105.9 0.036 37.27 45.68 82.95 1.23 12.22
42.8 64.68 0.74 89.8 0.038 22.73 43.08 65.81 1.90 1.72
75.1 53.93 0.51 74.5 0.041 12.95 39.70 52.66 3.06 -2.42
146.3 46.63 0.32 59.6 0.046 6.65 35.21 41.86 5.30 -11.40
360 35.20 0.18 44.2 0.055 2.70 28.74 31.44 10.64 -11.94
690.4 29.54 0.12 35.5 0.064 1.41 24.14 25.55 17.13 -15.61
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Table A.6: Comparison between model and data, Burde Assembly3

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
26.1 64.36 1.92 105.9 0.045 23.48 35.27 58.75 1.50 -9.54
42.8 58.55 1.38 89.8 0.047 14.32 33.92 48.24 2.37 -21.37
75.1 50.84 0.95 74.5 0.050 8.16 32.07 40.23 3.93 -26.38
146.3 42.70 0.61 59.6 0.054 4.19 29.41 33.60 7.02 -27.09
360 34.05 0.33 44.2 0.062 1.70 25.15 26.85 14.77 -26.81

Table A.7: Comparison between model and data, Burde Assembly4

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
26.1 77.72 2.21 128.5 0.053 75.63 29.94 105.57 0.40 26.38
146.3 41.04 0.70 72.3 0.062 13.49 25.30 38.79 1.87 -5.81
690.4 24.02 0.25 43.1 0.080 2.86 19.01 21.87 6.65 -9.86

Table A.8: Comparison between model and data, Burde Assembly5

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
26.1 75.44 2.46 155.3 0.061 58.77 25.84 84.61 0.44 10.83
146.3 37.31 0.78 87.4 0.070 10.48 22.01 32.50 2.10 -14.82
690.4 22.27 0.28 52.1 0.089 2.22 16.69 18.91 7.51 -17.77

Table A.9: Comparison between model and data, Burde Assembly6

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
26.1 73.56 2.81 203.6 0.073 60.93 21.04 81.97 0.35 10.26
146.3 35.68 0.89 114.6 0.083 10.87 18.09 28.96 1.66 -23.21
690.4 19.70 0.32 68.3 0.105 2.30 13.85 16.16 6.01 -21.93

Table A.10: Comparison between model and data, Clausing and Chao 1A

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
301.1505 0.53 0.31 3172.2 0.440 0.16 0.27 0.44 1.69 -20.87
548.4991 0.34 0.21 2597.6 0.503 0.09 0.20 0.29 2.26 -16.43
1083.024 0.17 0.13 2070.5 0.595 0.05 0.12 0.17 2.76 1.40
1809.698 0.08 0.10 1744.8 0.684 0.03 0.07 0.10 2.77 16.37
2651.661 0.07 0.07 1536.2 0.763 0.02 0.04 0.06 2.37 -5.52
3444.714 0.04 0.06 1407.9 0.823 0.01 0.03 0.04 1.84 -8.82
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Table A.11: Comparison between model and data, Clausing and Chao 8A

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
305.8486 0.30 1.69 3309.1 0.738 0.33 0.05 0.38 0.15 20.77
986.5595 0.13 0.77 2239.6 0.836 0.10 0.02 0.13 0.21 -7.04
1892.552 0.06 0.50 1802.5 0.922 0.05 0.01 0.06 0.12 8.53

Table A.12: Comparison between model and data, Clausing and Chao 1B

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
102.01 1.42 0.55 2134.4 0.210 0.73 1.05 1.78 1.45 20.24
155.82 1.34 0.42 1853.3 0.226 0.48 0.95 1.42 2.00 5.83
303.95 1.00 0.27 1483.3 0.258 0.24 0.78 1.02 3.20 1.89
548.5 0.75 0.18 1218.3 0.296 0.14 0.63 0.77 4.66 2.35
1086.52 0.53 0.11 970.1 0.352 0.07 0.47 0.53 6.84 0.33
1813.19 0.38 0.08 817.9 0.406 0.04 0.36 0.40 8.70 4.56
2655.15 0.31 0.06 720.2 0.453 0.03 0.28 0.31 10.08 0.22
3332.92 0.26 0.05 667.6 0.484 0.02 0.24 0.26 10.82 0.38

Table A.13: Comparison between model and data, Clausing and Chao 2B

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
38.8 2.76 1.15 3045.4 0.193 1.97 1.18 3.15 0.60 12.58
102.01 1.58 0.60 2206.6 0.219 0.75 0.99 1.74 1.32 9.45
155.82 1.35 0.45 1916.0 0.235 0.49 0.90 1.39 1.83 2.77
303.95 1.04 0.29 1533.4 0.267 0.25 0.74 0.99 2.94 -4.71
548.5 0.80 0.20 1259.5 0.304 0.14 0.60 0.74 4.30 -8.65
1086.52 0.59 0.12 1002.9 0.361 0.07 0.45 0.52 6.32 -14.21
1813.19 0.42 0.09 845.5 0.415 0.04 0.34 0.38 8.03 -9.80
2655.15 0.33 0.07 744.6 0.463 0.03 0.27 0.30 9.28 -12.18
3332.92 0.28 0.06 690.2 0.495 0.02 0.23 0.25 9.94 -9.73
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Table A.14: Comparison between model and data, Clausing and Chao 3B

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
38.8 3.72 1.11 2710.1 0.176 2.43 1.64 4.07 0.68 8.78
102.01 2.35 0.58 1963.5 0.200 0.92 1.39 2.31 1.50 -1.62
155.82 2.00 0.44 1705.0 0.215 0.61 1.26 1.86 2.08 -7.27
303.95 1.46 0.28 1364.5 0.245 0.31 1.04 1.35 3.36 -8.03
548.5 1.10 0.19 1120.8 0.279 0.17 0.85 1.02 4.94 -7.69
1086.52 0.82 0.12 892.4 0.332 0.09 0.64 0.72 7.34 -13.67
1813.19 0.60 0.09 752.4 0.382 0.05 0.49 0.55 9.48 -10.10
2655.15 0.49 0.07 662.6 0.426 0.04 0.40 0.43 11.13 -14.20
3332.92 0.41 0.06 614.2 0.456 0.03 0.34 0.37 12.08 -10.60

Table A.15: Comparison between model and data, Clausing and Chao 4B

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
102.01 1.37 0.60 2206.6 0.219 0.75 0.99 1.74 1.32 21.26
155.82 1.20 0.45 1916.0 0.235 0.49 0.90 1.39 1.83 13.54
303.95 0.94 0.29 1533.4 0.267 0.25 0.74 0.99 2.94 5.47
548.50 0.74 0.20 1259.5 0.304 0.14 0.60 0.74 4.30 0.55
1086.52 0.54 0.12 1002.9 0.361 0.07 0.45 0.52 6.32 -4.15
1813.19 0.39 0.09 845.5 0.415 0.04 0.34 0.38 8.03 -3.44
2655.15 0.29 0.07 744.6 0.463 0.03 0.27 0.30 9.28 0.82
3332.92 0.25 0.06 690.2 0.495 0.02 0.23 0.25 9.94 0.53

Table A.16: Comparison between model and data, Clausing and Chao 2M

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
35.62154 1.23 0.32 9590.7 0.318 0.26 0.73 0.98 2.83 -24.69
99.31467 0.51 0.16 6814.2 0.403 0.09 0.47 0.56 5.08 9.80
234.0989 0.24 0.09 5120.2 0.508 0.04 0.28 0.32 7.11 24.45
548.7642 0.10 0.05 3854.4 0.653 0.02 0.13 0.15 7.71 28.09
1086.381 0.04 0.03 3069.7 0.805 0.01 0.04 0.05 5.19 26.76
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Table A.17: Comparison between model and data, Clausing and Chao 3M

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
234.0989 0.68 0.07 2822.3 0.371 0.04 0.55 0.59 14.13 -14.93
548.7642 0.28 0.04 2124.6 0.479 0.02 0.32 0.34 19.28 17.83
1082.834 0.15 0.02 1693.9 0.593 0.01 0.18 0.19 21.25 20.36
1809.452 0.09 0.02 1427.4 0.699 0.01 0.10 0.10 19.19 13.63
2651.6 0.04 0.01 1256.7 0.790 0.00 0.05 0.05 14.42 19.34

Table A.18: Comparison between model and data, Clausing and Chao 3S

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
102.0138 9.05 0.39 8733.1 0.253 4.62 5.63 10.25 1.22 11.75
236.5184 4.87 0.22 6598.3 0.304 1.99 4.23 6.23 2.12 21.87
548.4991 2.90 0.13 4985.0 0.375 0.86 2.91 3.77 3.39 23.22
1086.517 2.07 0.08 3969.3 0.454 0.43 1.97 2.40 4.53 13.87
1813.191 1.42 0.06 3346.4 0.528 0.26 1.36 1.62 5.24 12.19
2655.155 1.08 0.04 2946.9 0.592 0.18 0.97 1.15 5.48 5.91
3448.208 0.88 0.04 2701.0 0.642 0.14 0.74 0.88 5.40 -0.23
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Table A.19: Comparison between model and data, Cassidy and Mark SS303

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
1194.82 1.33 0.72 2775.4 0.603 0.62 0.65 1.27 1.06 -4.13
1306.80 0.99 0.68 2693.7 0.611 0.57 0.63 1.19 1.11 16.79
1428.92 1.16 0.64 2614.7 0.619 0.52 0.60 1.12 1.16 -3.95
1428.92 1.14 0.64 2614.7 0.619 0.52 0.60 1.12 1.16 -1.62
1635.15 1.11 0.59 2499.8 0.632 0.45 0.56 1.01 1.24 -9.83
1708.62 1.02 0.57 2463.5 0.636 0.43 0.55 0.98 1.26 -3.90
1827.19 0.80 0.54 2409.0 0.643 0.40 0.52 0.93 1.29 14.38
2138.31 0.71 0.49 2286.0 0.660 0.35 0.47 0.82 1.37 13.41
2232.55 0.70 0.48 2253.3 0.665 0.33 0.46 0.79 1.39 12.29
2232.55 0.73 0.48 2253.3 0.665 0.33 0.46 0.79 1.39 8.25
2284.74 0.76 0.47 2236.0 0.668 0.32 0.45 0.78 1.40 2.21
2498.07 0.65 0.44 2170.5 0.678 0.30 0.43 0.72 1.44 10.02
2498.07 0.56 0.44 2170.5 0.678 0.30 0.43 0.72 1.44 22.98
2613.09 0.66 0.43 2138.2 0.684 0.28 0.41 0.69 1.45 4.36
2672.38 0.71 0.42 2122.2 0.686 0.28 0.40 0.68 1.46 -4.29
2857.83 0.64 0.40 2075.3 0.695 0.26 0.38 0.64 1.48 1.10
3266.74 0.51 0.37 1984.8 0.713 0.23 0.34 0.57 1.51 10.61
3266.74 0.58 0.37 1984.8 0.713 0.23 0.34 0.57 1.51 -2.26
3416.73 0.53 0.36 1955.3 0.719 0.22 0.33 0.54 1.52 2.42
3573.81 0.53 0.35 1926.3 0.725 0.21 0.31 0.52 1.52 -1.94
3573.81 0.54 0.35 1926.3 0.725 0.21 0.31 0.52 1.52 -4.33
4178.31 0.42 0.31 1828.5 0.748 0.18 0.27 0.44 1.51 4.36
4272.56 0.42 0.31 1814.9 0.752 0.17 0.26 0.43 1.51 4.15
4370.35 0.42 0.30 1801.3 0.755 0.17 0.25 0.42 1.50 -0.40
4569.49 0.42 0.29 1774.7 0.762 0.16 0.24 0.40 1.49 -5.50
4670.83 0.42 0.29 1761.8 0.766 0.16 0.23 0.39 1.48 -5.83
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Table A.20: Comparison between model and data, Fletcher and Gyorog Brass,Test12 Tave52

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
101.34 0.69 0.17 8411.0 0.314 0.18 0.67 0.84 3.80 18.37
335.44 0.35 0.08 5643.8 0.434 0.05 0.36 0.41 6.79 14.22
1047.87 0.13 0.04 3860.8 0.612 0.02 0.15 0.16 8.53 16.78
2756.49 0.03 0.02 2796.8 0.832 0.01 0.03 0.04 4.73 15.25

Table A.21: Comparison between model and data, Fletcher and Gyorog Brass,Test34 Tave-10

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
101.34 1.71 2.46 1688.7 0.299 1.05 0.79 1.84 0.75 6.86
335.44 0.87 1.11 1133.1 0.329 0.32 0.67 0.99 2.12 11.77
1047.87 0.56 0.52 775.1 0.382 0.10 0.51 0.61 5.04 8.03
2756.49 0.37 0.27 561.5 0.457 0.04 0.35 0.39 9.12 4.22

Table A.22: Comparison between model and data, Fletcher and Gyorog Brass,Test34 Tave94

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
90.70 1.25 2.57 1728.1 0.297 1.02 0.70 1.72 0.68 27.29
356.22 0.69 1.03 1095.3 0.333 0.26 0.58 0.84 2.21 17.08
1065.61 0.47 0.50 760.2 0.386 0.09 0.44 0.53 5.03 11.10
2808.68 0.30 0.26 550.3 0.463 0.03 0.30 0.33 9.03 8.15

Table A.23: Comparison between model and data, Fletcher and Gyorog MgAz31B,Test51
Tave90

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
87.15 3.51 0.08 615.5 0.112 0.16 3.34 3.50 20.82 -0.21
352.67 1.91 0.03 386.2 0.171 0.04 1.98 2.02 49.93 5.47
1047.87 1.13 0.01 268.7 0.241 0.01 1.23 1.24 91.79 8.64
2784.36 0.66 0.01 194.0 0.332 0.01 0.74 0.74 146.73 11.53
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Table A.24: Comparison between model and data, Fletcher and Gyorog MgAz31B,Test51 Tave-
23

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
80.57 5.44 0.09 656.5 0.106 0.29 4.49 4.77 15.57 -13.87
349.12 2.57 0.03 402.7 0.164 0.07 2.62 2.69 39.42 4.25
1034.19 1.31 0.02 280.4 0.231 0.02 1.64 1.66 72.96 21.00
2693.66 0.84 0.01 203.8 0.316 0.01 1.01 1.02 116.96 16.99

Table A.25: Comparison between model and data, Fletcher and Gyorog SS304,Test34 Tave-33

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
94.33 19.31 3.26 5177.9 0.402 15.23 3.35 18.58 0.22 -3.92
366.83 7.24 1.32 3292.6 0.444 3.92 2.72 6.64 0.70 -9.06
1100.48 3.05 0.63 2283.0 0.507 1.31 1.99 3.29 1.52 7.39
2840.29 1.76 0.34 1664.3 0.598 0.51 1.24 1.75 2.46 -0.91

Table A.26: Comparison between model and data, Fletcher and Gyorog SS304,Test34 Tave89

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
104.81 8.82 3.04 4999.2 0.405 8.41 2.81 11.23 0.33 21.47
356.35 4.57 1.35 3324.6 0.443 2.47 2.33 4.80 0.94 4.74
1055.07 2.29 0.65 2315.3 0.504 0.84 1.71 2.55 2.05 10.29
2840.29 1.24 0.34 1664.3 0.598 0.31 1.05 1.37 3.40 9.08

Table A.27: Comparison between model and data, Fletcher and Gyorog SS304,Test67 Tave160

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
101.31 48.97 0.10 608.6 0.058 3.63 37.69 41.33 10.37 -18.50
363.33 28.98 0.04 397.6 0.084 1.01 24.91 25.93 24.59 -11.77
1072.53 13.91 0.02 277.2 0.117 0.34 16.80 17.14 48.94 18.86
2759.94 8.90 0.01 202.3 0.159 0.13 11.52 11.65 86.37 23.63

Table A.28: Comparison between model and data, Fletcher and Gyorog SS304,Test67 Tave73

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
101.31 46.99 0.10 608.6 0.058 3.87 40.11 43.98 10.37 -6.85
345.87 26.74 0.04 404.2 0.082 1.13 26.97 28.10 23.81 4.83
1072.53 14.48 0.02 277.2 0.117 0.37 17.87 18.24 48.94 20.62
2815.84 9.82 0.01 200.9 0.160 0.14 12.16 12.30 87.39 20.17
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Table A.29: Comparison between model and data, Fisher 11A, Ni200-CS

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
23.90 53.00 0.11 131.8 0.013 5.45 51.83 57.28 9.51 7.48
40.03 44.50 0.08 111.0 0.015 3.25 44.88 48.14 13.80 7.56
56.78 40.00 0.06 98.8 0.017 2.29 40.52 42.81 17.67 6.57
88.05 32.40 0.05 85.4 0.019 1.48 35.47 36.95 23.98 12.31
120.37 29.00 0.04 76.9 0.021 1.08 32.17 33.25 29.74 12.79
264.72 19.10 0.02 59.1 0.027 0.49 24.95 25.45 50.73 24.94
475.72 14.70 0.01 48.7 0.032 0.27 20.53 20.80 74.99 29.33
687.92 12.40 0.01 43.0 0.036 0.19 18.11 18.30 95.67 32.24

Table A.30: Comparison between model and data, Fisher 11B, Ni200-CS

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
40.00 38.00 0.10 176.0 0.019 3.25 34.77 38.03 10.69 0.07
56.80 35.60 0.08 156.6 0.021 2.29 31.46 33.75 13.73 -5.48
88.10 30.10 0.06 135.3 0.024 1.48 27.60 29.08 18.69 -3.51
120.00 25.20 0.05 122.0 0.026 1.08 25.10 26.18 23.15 3.75
192.00 21.70 0.03 104.3 0.031 0.68 21.62 22.30 31.90 2.68
265.00 18.80 0.03 93.7 0.034 0.49 19.47 19.96 39.65 5.80
476.00 13.90 0.02 77.1 0.041 0.27 16.01 16.28 58.56 14.63
688.00 11.40 0.01 68.2 0.046 0.19 14.11 14.30 74.63 20.30

Table A.31: Comparison between model and data, Fisher 13A, Ni200-CS

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
23.90 47.20 0.07 208.9 0.016 3.25 42.59 45.85 13.09 -2.95
40.03 41.48 0.05 175.9 0.018 1.94 36.46 38.41 18.77 -8.00
56.78 37.07 0.04 156.6 0.020 1.37 32.70 34.07 23.88 -8.79
88.05 31.68 0.03 135.3 0.023 0.88 28.43 29.31 32.19 -8.09
120.37 28.50 0.02 121.9 0.026 0.65 25.68 26.32 39.74 -8.25
159.20 25.97 0.02 111.0 0.028 0.49 23.41 23.90 47.93 -8.65
192.00 23.38 0.02 104.3 0.030 0.41 21.99 22.40 54.30 -4.39
265.00 20.40 0.01 93.7 0.033 0.29 19.73 20.02 67.23 -1.86
370.00 17.44 0.01 83.8 0.037 0.21 17.61 17.82 83.77 2.10
476.00 15.94 0.01 77.1 0.040 0.16 16.14 16.31 98.80 2.24
580.02 14.09 0.01 72.2 0.043 0.13 15.07 15.20 112.40 7.31
688.00 13.20 0.01 68.2 0.045 0.11 14.20 14.31 125.60 7.76
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Table A.32: Comparison between model and data, Gyorog, SS304

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
317.71 5.02 1.92 13214.2 0.926 4.37 0.05 4.43 0.01 -13.45
1074.73 1.19 0.85 8802.7 1.000 1.29 0.00 1.29 0.00 8.12
730.17 1.61 1.10 10013.2 1.000 1.90 0.00 1.90 0.00 15.42

Table A.33: Comparison between model and data, Kitscha T1, Steel 1020-CS

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
18.68 65.84 0.72 111.1 0.015 24.62 51.93 76.55 2.11 14.00
37.37 56.92 0.46 88.2 0.017 12.31 46.93 59.24 3.81 3.91
59.61 49.14 0.33 75.5 0.018 7.72 43.20 50.91 5.60 3.48
92.53 47.81 0.25 65.2 0.020 4.97 39.52 44.50 7.95 -7.45
124.55 40.98 0.20 59.0 0.021 3.69 37.01 40.70 10.02 -0.70
157.03 38.71 0.18 54.6 0.023 2.93 35.05 37.97 11.96 -1.92
197.96 38.71 0.15 50.6 0.024 2.32 33.10 35.43 14.25 -9.25
302.45 34.15 0.11 43.9 0.027 1.52 29.64 31.16 19.49 -9.61

Table A.34: Comparison between model and data, Kitscha T2, Steel 1020-CS

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
16.01 81.96 0.13 117.0 0.010 11.26 74.62 85.88 6.63 4.56
22.24 76.08 0.11 104.8 0.011 8.10 68.44 76.55 8.45 0.61
55.60 54.26 0.06 77.2 0.014 3.24 52.73 55.97 16.27 3.06
87.19 47.43 0.04 66.5 0.016 2.07 46.00 48.07 22.25 1.33
195.72 37.38 0.03 50.8 0.021 0.92 35.62 36.54 38.67 -2.30
266.89 32.63 0.02 45.8 0.023 0.68 32.19 32.87 47.67 0.71
467.06 27.13 0.01 38.0 0.027 0.39 26.74 27.12 69.28 -0.04

168



Table A.35: Comparison between model and data, McMillan and Mikic P1, SS303

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
733.96 32.47 0.46 142.2 0.096 7.39 20.48 27.87 2.77 -16.50
1178.78 27.80 0.34 121.4 0.104 4.60 18.60 23.21 4.04 -19.77
1623.60 25.00 0.27 109.2 0.110 3.34 17.29 20.63 5.17 -21.17
3402.89 17.37 0.17 85.3 0.130 1.59 14.20 15.80 8.91 -9.98
5182.18 13.36 0.13 74.1 0.144 1.05 12.49 13.54 11.93 1.28
9630.40 10.59 0.08 60.3 0.170 0.56 10.11 10.68 17.95 0.80
14078.62 8.47 0.06 53.1 0.189 0.39 8.77 9.16 22.77 7.48
22975.06 6.35 0.05 45.1 0.219 0.24 7.20 7.43 30.46 14.52
31871.50 5.56 0.04 40.5 0.241 0.17 6.24 6.41 36.64 13.25
43436.87 4.54 0.03 36.5 0.265 0.12 5.41 5.53 43.27 17.85

Table A.36: Comparison between model and data, McMillan and Mikic P2, SS303

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
733.96 7.09 0.82 1071.5 0.301 3.61 3.48 7.09 0.96 -0.04
1178.78 4.89 0.60 915.0 0.321 2.25 3.12 5.37 1.39 8.84
1623.60 3.95 0.49 822.3 0.337 1.63 2.86 4.49 1.75 12.11
2513.24 3.44 0.36 710.9 0.364 1.05 2.49 3.54 2.36 2.85
3402.89 2.80 0.30 642.6 0.387 0.78 2.22 3.00 2.85 6.59
5182.18 1.87 0.22 558.5 0.423 0.51 1.85 2.36 3.62 20.84
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Table A.37: Comparison between model and data, Mikic and Rohsenow T2, SS305

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
463.64 2.63 6.02 7858.6 1.000 4.67 0.00 4.67 0.00 43.75
681.99 1.98 4.65 6910.0 1.000 3.18 0.00 3.18 0.00 37.62
919.76 1.91 3.81 6254.3 1.000 2.36 0.00 2.36 0.00 19.08
1405.97 1.38 2.87 5429.3 1.000 1.54 0.00 1.54 0.00 10.33
2212.97 1.01 2.12 4667.4 1.000 0.98 0.00 0.98 0.00 -3.33
4102.76 0.55 1.41 3799.4 1.000 0.53 0.00 0.53 0.00 -4.72

Table A.38: Comparison between model and data, Smuda and Gyorog, SS304

F Rexp α τ B Rs RL Rj Θ
Rj−Rexp

Rj
%

N K/W (−) (−) (−) K/W K/W K/W (−) (−)
359.76 3.02 0.31 12529.0 0.563 1.69 1.25 2.94 0.74 -2.93
1082.83 1.15 0.15 8677.7 0.731 0.56 0.46 1.02 0.82 -12.35
1977.17 0.45 0.10 7099.7 0.861 0.31 0.15 0.45 0.48 0.11
1079.29 1.09 0.15 8687.2 0.731 0.56 0.46 1.03 0.83 -6.00
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A.2 Conforming Contacts

Tables A.40 through A.73 provide the following information for TCR data points for the data

sets listed in Table A.39:

1. applied force, F

2. measured thermal contact resistance, Rexp

3. joint resistance predicted by the model, which is equal to micro thermal resistanceRj = Rs

Rs =
0.565 (σ/m)H∗

ksF

where H∗ ≡ c1 (σ/mσ0)
c2 .

4. relative difference between the model and data.

Since, the specimens were designed to be flat and radius of curvatures were relatively high,

macro thermal resistance for the these data were zero. Therefore, the radius of curvature,

macrocontact radius, the roughness parameter α, and the geometric parameter τ were not

included in Tables.
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Table A.39: Data information, conforming rough contacts

Reference, test # E0 σ/m c1/c2 ks bL Tc
and material GPa µm GPa W/mK mm ◦C
A,P3435,Ni200 112.09 8.48/.344 6.3/-.26 67.1 14.3 110
A,P2627,Ni200 112.09 1.23/.139 6.3/-.26 64.5 14.3 150
A,P1011,Ni200 112.09 4.27/.237 6.3/-.26 67.7 14.3 100
A,P0809,Ni200 112.09 4.29/.240 6.3/-.26 67.3 14.3 108
A,P1617,Ni-Ag 63.90 4.45/.255 0.39/0 100.0 14.3 195
A,P3233,Ni-Ag 63.90 8.03/.349 0.39/0 100.0 14.3 190
H,PNI0102,Ni200 112.08 0.90/.110 6.3/-.26 75.3 12.5 120
H,PNI0304,Ni200 112.08 3.43/.190 6.3/-.26 76.0 12.5 115
H,PNI0506,Ni200 112.08 4.24/.188 6.3/-.26 75.9 12.5 110
H,PNI0708,Ni200 112.08 9.53/.228 6.3/-.26 75.7 12.5 115
H,PNI0910,Ni200 112.08 13.94/.233 6.3/-.26 75.8 12.5 115
H,PSS0102,SS304 113.74 0.48/.072 6.3/-.26 19.2 12.5 140
H,PSS0304,SS304 113.74 2.71/.116 6.3/-.26 19.1 12.5 145
H,PSS0506,SS304 113.74 5.88/.146 6.3/-.26 18.9 12.5 130
H,PSS0708,SS304 113.74 10.95/.19 6.3/-.26 18.9 12.5 125
H,PZ40102,Zircaloy4 57.26 0.61/.049 3.32/-.15 16.6 12.5 130
H,PZ40304,Zircaloy4 57.26 2.75/.148 3.32/-.15 17.5 12.5 155
H,PZ40506,Zircaloy4 57.26 3.14/.129 3.32/-.15 18.6 12.5 155
H,PZ40708,Zircaloy4 57.26 7.92/.207 3.32/-.15 18.6 12.5 160
H,PZN0102,Zr2.5Nb 57.26 0.92/.083 5.88/-.27 21.3 12.5 165
H,PZN0304,Zr2.5Nb 57.26 2.50/.162 5.88/-.27 21.2 12.5 170
H,PZN0506,Zr2.5Nb 57.26 5.99/.184 5.88/-.27 21.2 12.5 165
H,PZN0708,Zr2.5Nb 57.26 8.81/.200 5.88/-.27 21.2 12.5 160
M,T1,SS304 113.74 0.72/.041 6.27/-.23 18.8 12.5 39
MW,SS304,SM1SM2 113.74 1.34/.105 4.8/0 16.0 12.7 52
MW,SS304,SC1SC2 113.74 1.44/.089 4.5/0 16.0 12.7 52
N,SS304,GL 113.74 0.97/.061 5.12/-.29 19.5 12.5 175
N,SS304,LG 113.74 0.97/.061 5.12/-.29 19.5 12.5 185
N,Ni200,GL 112.08 0.87/.050 4.6/-.21 68.9 12.5 195
N,Ni200,LG 112.08 0.87/.050 4.6/-.21 69.4 12.5 185
N,Al6061T6,GL 39.11 0.86/.058 0.9/-.006 211.4 12.5 223
N,Al6061T6,LG 39.11 0.86/.058 0.9/-.006 211.5 12.5 227
N,Ni200-G,Al6061T6-L 56.23 0.90/.048 1.1/-.008 104.3 12.5 168
N,Al6061T6-L,Ni200-G 56.23 0.90/.048 1.1/-.008 102.7 12.5 210
N,Al6061T6-G,Ni200-L 56.23 1.20/.057 1.03/-.001 108.1 12.5 135
N,Ni200-L,Al6061T6-G 56.23 1.20/0.057 1.03/-.001 108.8 12.5 125
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Table A.40: Comparison between model and data, Antonetti,P3435, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
366.01 1.54 1.55 0.75
625.62 0.93 0.91 -2.23
1019.83 0.53 0.56 4.64
1333.28 0.42 0.43 0.92
1742.88 0.32 0.33 0.56
2200.55 0.28 0.26 -7.34

Table A.41: Comparison between model and data, Antonetti,P2627, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
398.70 0.59 0.69 15.40
628.18 0.37 0.44 15.30
1040.98 0.24 0.27 9.69
1349.31 0.18 0.21 13.67
1818.52 0.15 0.15 4.68
2249.91 0.12 0.12 3.21

Table A.42: Comparison between model and data, Antonetti,P1011, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
328.19 1.25 1.36 7.97
737.15 0.62 0.61 -1.79
933.94 0.47 0.48 1.40
1171.11 0.38 0.38 -0.02
1378.15 0.36 0.32 -11.52
2060.82 0.21 0.22 2.07
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Table A.43: Comparison between model and data, Antonetti,P0809, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
447.42 0.89 1.00 10.65
765.35 0.57 0.58 2.68
999.32 0.40 0.45 11.63
1233.93 0.36 0.36 1.11
1570.45 0.30 0.28 -5.83
1852.49 0.24 0.24 1.71
2330.68 0.18 0.19 5.56

Table A.44: Comparison between model and data, Antonetti,P1617, Ni200-Ag

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
346.58 0.13 0.11 -15.39
636.78 0.07 0.06 -16.20
956.46 0.05 0.04 -11.58
1274.85 0.03 0.03 -7.27
1622.71 0.03 0.02 -29.42
1958.40 0.03 0.02 -28.89
2353.67 0.02 0.02 0.98

Table A.45: Comparison between model and data, Antonetti,P3233, Ni200-Ag

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
369.64 0.16 0.14 -17.42
703.41 0.09 0.07 -21.38
956.46 0.07 0.05 -26.97
1298.55 0.05 0.04 -20.95
1735.46 0.04 0.03 -19.10
2354.31 0.03 0.02 -23.26
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Table A.46: Comparison between model and data, Hegazy,PNI0102, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
242.98 0.64 0.92 30.68
288.63 0.57 0.78 26.85
360.30 0.48 0.62 22.64
422.64 0.43 0.53 19.80
494.80 0.39 0.45 14.86
556.65 0.36 0.40 11.18
665.13 0.31 0.34 7.18
772.14 0.28 0.29 3.37
885.05 0.25 0.25 0.98
991.57 0.23 0.23 0.37
1104.96 0.21 0.20 -3.18
1314.07 0.18 0.17 -6.27
1540.36 0.16 0.15 -9.60
1765.18 0.15 0.13 -14.97
2005.22 0.12 0.11 -9.76
2199.61 0.11 0.10 -11.47
2413.14 0.10 0.09 -11.97
2644.83 0.09 0.08 -7.62
2848.05 0.09 0.08 -9.48
3092.01 0.08 0.07 -7.73
3522.51 0.07 0.06 -8.97
3955.46 0.06 0.06 -8.26
4334.42 0.06 0.05 -9.46
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Table A.47: Comparison between model and data, Hegazy,PNI0304, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
234.15 1.16 1.70 31.63
290.11 1.06 1.37 22.88
359.32 0.90 1.11 19.30
424.61 0.80 0.94 15.32
489.89 0.73 0.81 10.51
559.60 0.66 0.71 7.32
668.08 0.58 0.60 3.13
802.09 0.51 0.50 -2.46
890.45 0.47 0.45 -4.07
990.58 0.43 0.40 -7.23
1109.37 0.39 0.36 -8.49
1342.05 0.32 0.30 -9.14
1546.25 0.28 0.26 -10.16
1760.27 0.25 0.23 -10.18
1997.37 0.22 0.20 -10.51
2206.48 0.19 0.18 -7.81
2419.52 0.18 0.16 -10.02
2639.43 0.17 0.15 -14.16
2865.23 0.16 0.14 -11.90
3094.96 0.15 0.13 -12.97
3559.82 0.13 0.11 -16.19
3951.53 0.12 0.10 -17.74
4319.69 0.11 0.09 -15.61
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Table A.48: Comparison between model and data, Hegazy,PNI0506, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
242.00 1.56 1.94 19.61
287.65 1.43 1.64 12.62
354.90 1.21 1.33 8.45
427.06 1.06 1.10 3.47
494.80 0.95 0.95 0.29
555.18 0.88 0.85 -3.72
662.68 0.76 0.71 -6.83
775.09 0.68 0.61 -11.87
887.50 0.62 0.53 -16.16
996.96 0.55 0.47 -15.72
1151.59 0.47 0.41 -16.11
1322.41 0.42 0.36 -17.27
1533.49 0.36 0.31 -16.19
1764.20 0.32 0.27 -18.37
1973.80 0.28 0.24 -16.32
2203.53 0.25 0.21 -16.99
2424.92 0.23 0.19 -18.79
2632.07 0.21 0.18 -18.00
2862.78 0.20 0.16 -20.24
3084.65 0.18 0.15 -20.14
3517.11 0.16 0.13 -19.01
3963.32 0.14 0.12 -19.34
4361.91 0.14 0.11 -26.71
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Table A.49: Comparison between model and data, Hegazy,PNI0708, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
226.29 2.05 3.29 37.68
292.56 1.90 2.54 25.51
356.87 1.69 2.09 19.20
426.08 1.51 1.75 13.67
490.87 1.37 1.52 9.76
559.11 1.24 1.33 7.02
671.52 1.07 1.11 3.66
780.98 0.95 0.95 0.48
896.83 0.85 0.83 -2.97
997.95 0.79 0.75 -5.39
1103.48 0.70 0.67 -4.01
1318.00 0.59 0.56 -4.00
1540.36 0.50 0.48 -3.72
1766.16 0.45 0.42 -6.30
1989.51 0.41 0.37 -8.39
2225.62 0.36 0.33 -8.23
2419.52 0.34 0.31 -9.45
2645.32 0.31 0.28 -11.86
2864.74 0.29 0.26 -10.74
3079.25 0.26 0.24 -9.24
3516.62 0.24 0.21 -12.44
3953.99 0.21 0.19 -11.90
4309.38 0.19 0.17 -10.08
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Table A.50: Comparison between model and data, Hegazy,PNI0910, Ni200

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
232.18 3.04 4.18 27.21
290.60 2.90 3.34 13.17
356.87 2.49 2.72 8.47
421.66 2.17 2.30 5.47
468.78 1.98 2.07 4.30
556.16 1.79 1.74 -2.39
682.31 1.50 1.42 -5.23
780.49 1.35 1.24 -8.72
894.86 1.18 1.08 -8.66
996.96 1.08 0.97 -11.16
1106.92 0.96 0.88 -10.09
1333.21 0.81 0.73 -11.26
1534.96 0.70 0.63 -10.35
1763.22 0.62 0.55 -12.30
1997.37 0.54 0.49 -11.85
2213.35 0.49 0.44 -11.82
2428.35 0.46 0.40 -14.42
2656.61 0.41 0.37 -13.31
2854.92 0.39 0.34 -14.38
3082.69 0.36 0.31 -14.89
3526.44 0.31 0.28 -14.00
3967.73 0.28 0.24 -14.44
4315.76 0.26 0.22 -14.83
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Table A.51: Comparison between model and data, Hegazy,PSS0102, SS304

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
218.93 2.89 3.64 20.68
290.60 2.14 2.74 22.08
358.34 1.74 2.22 21.72
425.10 1.50 1.87 19.81
494.80 1.32 1.61 17.81
546.34 1.20 1.46 17.55
668.57 1.04 1.19 13.01
781.47 0.92 1.02 10.00
912.53 0.82 0.87 5.50
987.64 0.78 0.81 3.57
1104.47 0.71 0.72 1.87
1320.94 0.60 0.60 1.06
1545.27 0.51 0.52 0.41
1762.24 0.46 0.45 -1.14
1988.04 0.40 0.40 0.75
2205.50 0.36 0.36 1.65
2420.50 0.33 0.33 -1.02
2636.97 0.31 0.30 -2.34
2818.11 0.26 0.28 6.27
3066.98 0.26 0.26 1.60
3511.22 0.23 0.23 0.21
3953.01 0.20 0.20 0.13
4329.51 0.18 0.18 2.17
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Table A.52: Comparison between model and data, Hegazy,PSS0304, SS304

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
211.57 6.79 9.93 31.63
293.05 5.67 7.17 20.86
362.26 4.93 5.80 14.96
423.62 4.43 4.96 10.72
494.80 3.97 4.25 6.49
552.23 3.66 3.81 3.88
664.15 3.19 3.16 -0.92
774.11 2.84 2.71 -4.52
878.17 2.63 2.39 -9.85
989.60 2.33 2.12 -9.52
1100.54 2.14 1.91 -11.84
1314.07 1.82 1.60 -13.54
1547.73 1.54 1.36 -13.33
1769.11 1.37 1.19 -15.50
1984.11 1.19 1.06 -12.75
2200.10 1.09 0.96 -14.31
2419.52 1.00 0.87 -14.70
2638.45 0.91 0.80 -14.86
2874.07 0.84 0.73 -15.19
3080.23 0.79 0.68 -15.08
3527.91 0.70 0.60 -18.14
3983.44 0.61 0.53 -15.66
4331.47 0.56 0.49 -15.43
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Table A.53: Comparison between model and data, Hegazy,PSS0506, SS304

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
200.77 8.45 16.06 47.37
296.00 7.28 10.89 33.22
356.87 6.45 9.04 28.66
425.10 5.74 7.59 24.35
494.80 5.17 6.52 20.66
562.05 4.73 5.74 17.62
667.10 4.12 4.83 14.69
775.58 3.68 4.16 11.56
888.48 3.30 3.63 9.18
1014.15 2.95 3.18 7.15
1101.03 2.76 2.93 5.75
1334.69 2.31 2.42 4.51
1533.00 2.04 2.10 2.96
1752.91 1.79 1.84 2.69
1989.02 1.60 1.62 1.06
2226.60 1.45 1.45 -0.19
2424.43 1.35 1.33 -1.16
2632.56 1.24 1.22 -1.53
2890.27 1.14 1.12 -2.29
3086.12 1.09 1.04 -4.37
3521.04 0.96 0.92 -5.32
3968.22 0.86 0.81 -6.00
4329.02 0.80 0.74 -7.54
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Table A.54: Comparison between model and data, Hegazy,PSS0708, SS304

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
218.44 11.01 19.49 43.51
286.67 9.94 14.85 33.10
354.41 8.56 12.02 28.76
414.30 7.43 10.28 27.67
491.86 6.84 8.66 21.04
557.14 6.33 7.64 17.23
693.11 5.52 6.14 10.14
774.11 4.87 5.50 11.41
879.16 4.39 4.84 9.36
1008.25 4.01 4.22 5.05
1098.08 3.64 3.88 6.20
1311.61 3.08 3.25 5.07
1538.40 2.66 2.77 3.92
1787.76 2.30 2.38 3.47
1991.97 2.12 2.14 0.74
2200.59 1.92 1.94 0.59
2415.59 1.77 1.76 -0.40
2632.56 1.63 1.62 -0.91
2867.19 1.50 1.49 -0.78
3080.23 1.42 1.38 -2.40
3525.46 1.25 1.21 -3.66
3967.73 1.11 1.07 -3.33
4307.42 1.04 0.99 -4.92
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Table A.55: Comparison between model and data, Hegazy,PZ40102, Zircaloy4

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
205.68 3.94 4.68 15.79
291.58 2.99 3.30 9.50
355.39 2.45 2.71 9.58
438.35 2.06 2.20 6.17
494.31 1.81 1.95 6.82
562.05 1.63 1.71 5.04
667.10 1.37 1.44 5.35
775.58 1.18 1.24 5.04
896.34 1.05 1.07 2.30
996.96 0.94 0.97 3.01
1122.14 0.85 0.86 0.90
1319.47 0.72 0.73 1.34
1556.56 0.62 0.62 -0.70
1762.73 0.55 0.55 0.09
1976.26 0.49 0.49 0.25
2210.40 0.44 0.44 0.06
2436.70 0.39 0.39 1.11
2649.25 0.36 0.36 1.07
2847.56 0.34 0.34 0.27
3102.81 0.31 0.31 -0.40
3519.07 0.27 0.27 0.96
3973.13 0.24 0.24 0.00
4327.54 0.22 0.22 -0.18
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Table A.56: Comparison between model and data, Hegazy,PZ40304, Zircaloy4

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
214.02 4.53 6.00 24.59
293.54 3.53 4.38 19.34
364.23 2.99 3.53 15.32
430.50 2.62 2.98 12.27
494.31 2.34 2.60 9.92
538.49 2.17 2.39 8.98
665.62 1.84 1.93 4.66
772.64 1.64 1.66 1.29
878.66 1.46 1.46 0.35
987.15 1.32 1.30 -1.24
1101.03 1.18 1.17 -1.38
1312.60 1.01 0.98 -2.82
1541.83 0.85 0.83 -2.24
1762.24 0.77 0.73 -5.24
1974.29 0.69 0.65 -5.86
2226.60 0.61 0.58 -6.56
2419.03 0.56 0.53 -6.13
2631.57 0.51 0.49 -5.26
2864.74 0.47 0.45 -4.51
3080.23 0.45 0.42 -7.74
3551.47 0.36 0.36 0.85
3981.97 0.35 0.32 -8.95
4302.02 0.33 0.30 -10.68
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Table A.57: Comparison between model and data, Hegazy,PZ40506, Zircaloy4

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
203.71 4.72 7.47 36.83
295.51 3.87 5.15 24.74
364.23 3.32 4.18 20.54
432.95 2.91 3.51 17.03
491.86 2.60 3.09 15.85
558.61 2.36 2.72 13.19
668.57 2.05 2.27 9.72
770.18 1.83 1.97 7.22
889.95 1.62 1.71 5.08
974.88 1.50 1.56 3.91
1102.01 1.35 1.38 1.85
1333.21 1.15 1.14 -0.62
1547.73 1.01 0.98 -2.49
1789.73 0.88 0.85 -3.21
1970.86 0.80 0.77 -3.70
2220.22 0.72 0.68 -5.39
2429.33 0.66 0.63 -5.66
2638.94 0.61 0.58 -5.94
2844.12 0.56 0.53 -5.28
3066.98 0.52 0.50 -5.53
3561.78 0.46 0.43 -7.17
3953.99 0.41 0.38 -6.83
4307.42 0.38 0.35 -6.48
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Table A.58: Comparison between model and data, Hegazy,PZ40708, Zircaloy4

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
216.97 6.72 10.29 34.69
297.47 5.79 7.51 22.92
359.81 5.06 6.21 18.57
427.55 4.42 5.22 15.41
497.75 3.99 4.49 10.99
591.99 3.21 3.77 14.84
671.02 3.03 3.33 9.06
772.64 2.73 2.89 5.54
876.70 2.43 2.55 4.70
990.09 2.18 2.26 3.32
1086.79 2.00 2.06 2.82
1316.03 1.69 1.70 0.39
1529.56 1.47 1.46 -0.94
1760.76 1.30 1.27 -2.61
2002.27 1.16 1.12 -3.88
2203.04 1.07 1.01 -5.09
2434.73 0.98 0.92 -6.40
2635.99 0.90 0.85 -6.52
2877.01 0.83 0.78 -7.28
3076.31 0.79 0.73 -8.33
3509.75 0.69 0.64 -8.55
3942.70 0.61 0.57 -8.12
4345.22 0.56 0.51 -8.75
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Table A.59: Comparison between model and data, Hegazy,PZN0102, Zr2.5Nb

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
237.58 2.37 3.81 37.63
288.63 2.07 3.13 33.79
361.77 1.80 2.50 28.01
423.13 1.63 2.14 23.57
489.89 1.50 1.85 18.92
558.61 1.36 1.62 16.17
662.68 1.22 1.36 10.78
774.60 1.10 1.17 5.64
893.88 0.99 1.01 2.02
995.00 0.92 0.91 -1.32
1104.47 0.83 0.82 -1.54
1321.43 0.72 0.68 -5.47
1542.33 0.61 0.59 -4.48
1758.80 0.55 0.51 -6.90
1977.24 0.50 0.46 -8.73
2213.84 0.46 0.41 -12.34
2435.23 0.41 0.37 -11.29
2640.41 0.39 0.34 -13.80
2870.63 0.36 0.32 -14.58
3037.04 0.31 0.30 -4.33
3505.82 0.27 0.26 -4.97
3943.19 0.25 0.23 -7.44
4294.66 0.23 0.21 -8.31
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Table A.60: Comparison between model and data, Hegazy,PZN0304, Zr2.5Nb

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
226.78 3.11 5.09 39.03
292.56 2.72 3.95 31.12
356.87 2.38 3.24 26.48
422.64 2.16 2.73 21.04
490.87 1.96 2.35 16.60
557.63 1.81 2.07 12.51
670.53 1.61 1.72 6.30
774.60 1.45 1.49 2.56
889.95 1.30 1.30 0.10
1019.05 1.14 1.13 -0.23
1144.72 1.05 1.01 -3.58
1308.67 0.88 0.88 0.73
1537.91 0.77 0.75 -2.00
1782.85 0.67 0.65 -3.91
1988.04 0.60 0.58 -2.82
2187.82 0.54 0.53 -2.48
2416.57 0.50 0.48 -4.25
2651.21 0.46 0.44 -6.36
2882.41 0.42 0.40 -6.01
3086.12 0.39 0.37 -5.17
3538.22 0.35 0.33 -7.60
3955.95 0.32 0.29 -8.11
4289.26 0.29 0.27 -7.95
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Table A.61: Comparison between model and data, Hegazy,PZN0506, Zr2.5Nb

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
200.77 6.23 9.92 37.21
286.18 5.16 6.96 25.91
362.76 4.46 5.49 18.82
420.68 3.99 4.74 15.81
492.35 3.56 4.05 11.97
565.98 3.24 3.52 7.83
672.50 2.85 2.96 3.68
772.64 2.54 2.58 1.60
919.41 2.22 2.17 -2.54
992.06 2.07 2.01 -3.31
1110.36 1.89 1.79 -5.43
1328.30 1.58 1.50 -5.55
1505.51 1.37 1.32 -3.54
1757.33 1.21 1.13 -6.53
1999.33 1.06 1.00 -6.60
2200.10 0.97 0.91 -6.89
2437.68 0.88 0.82 -7.55
2651.21 0.82 0.75 -8.80
2901.06 0.76 0.69 -10.17
3073.85 0.71 0.65 -9.11
3516.13 0.63 0.57 -10.37
3958.90 0.55 0.50 -10.08
4312.33 0.52 0.46 -11.85
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Table A.62: Comparison between model and data, Hegazy,PZN0708, Zr2.5Nb

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
210.58 7.69 11.80 34.83
287.65 6.57 8.64 23.90
362.26 5.71 6.86 16.78
426.08 5.07 5.83 13.08
490.38 4.53 5.07 10.63
562.54 4.08 4.42 7.55
673.97 3.51 3.69 4.70
776.07 3.11 3.20 2.98
881.12 2.81 2.82 0.19
988.13 2.54 2.51 -1.04
1105.45 2.33 2.25 -3.84
1339.10 1.92 1.86 -3.70
1553.62 1.68 1.60 -4.78
1757.82 1.49 1.41 -5.30
1976.26 1.32 1.26 -5.17
2217.77 1.21 1.12 -8.00
2417.55 1.11 1.03 -7.69
2664.95 1.01 0.93 -8.30
2874.56 0.93 0.86 -7.59
3118.52 0.88 0.80 -10.00
3510.24 0.78 0.71 -9.75
3977.06 0.69 0.62 -9.89
4344.72 0.63 0.57 -9.70
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Table A.63: Comparison between model and data, Milanez et al.,T1, SS304

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
7.74 145.41 221.40 34.32
22.87 60.29 74.94 19.55
42.75 29.98 40.09 25.22
90.06 16.57 19.03 12.91
180.64 9.33 9.49 1.62
365.04 5.33 4.69 -13.50
594.56 3.51 2.88 -21.75
977.63 1.78 1.75 -1.56
1027.12 1.46 1.67 12.67
1205.77 1.27 1.42 10.86
1358.66 1.04 1.26 17.69

Table A.64: Comparison between model and data, McWaid,T1, SC1SC2

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
262.98 7.02 9.75 27.94
724.59 3.34 3.54 5.44
1216.10 2.28 2.11 -8.12
1702.54 1.70 1.51 -13.01
2031.90 1.41 1.26 -11.75
2432.20 1.20 1.05 -13.50
2943.97 1.00 0.87 -15.06
3394.94 0.89 0.75 -17.75
3987.79 0.77 0.64 -19.47
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Table A.65: Comparison between model and data, McWaid,T1, SM1SM2

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
280.72 5.64 7.72 26.96
729.66 2.79 2.97 6.02
1216.10 1.92 1.78 -7.52
1631.60 1.48 1.33 -11.71
2062.30 1.23 1.05 -16.65
2452.46 1.09 0.88 -23.39
2873.03 0.91 0.75 -20.57
3339.20 0.82 0.65 -25.65
3997.92 0.71 0.54 -31.43

Table A.66: Comparison between model and data, Nho,Al,G-Ni,L

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
269.98 0.30 0.40 26.86
348.52 0.27 0.31 12.49
402.52 0.24 0.27 10.39
495.78 0.22 0.22 -0.91
574.32 0.19 0.19 -2.22
662.68 0.17 0.16 -0.40
770.67 0.16 0.14 -13.07
878.66 0.15 0.12 -17.27
1079.92 0.12 0.10 -22.87
1207.55 0.10 0.09 -15.92
1452.99 0.10 0.07 -28.10
1673.88 0.08 0.07 -27.20
1929.13 0.07 0.06 -28.01

193



Table A.67: Comparison between model and data, Nho,Al,L-Ni,G

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
220.89 0.43 0.41 -4.67
255.25 0.35 0.35 -0.01
309.25 0.32 0.29 -9.03
338.70 0.28 0.27 -5.40
382.88 0.26 0.24 -9.33
427.06 0.23 0.21 -8.70
530.14 0.18 0.17 -8.44
657.77 0.15 0.14 -11.60
736.31 0.14 0.12 -13.78
937.57 0.12 0.10 -24.24
1035.74 0.11 0.09 -24.59
1212.46 0.09 0.07 -25.51
1408.81 0.08 0.06 -22.23
1654.24 0.06 0.05 -18.70
2012.58 0.06 0.04 -23.17
2307.11 0.05 0.04 -23.97

Table A.68: Comparison between model and data, Nho,Al6061T6,G-L

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
191.44 0.14 0.18 25.99
269.98 0.11 0.13 15.88
309.25 0.10 0.11 15.21
338.70 0.09 0.10 12.97
436.88 0.07 0.08 11.97
530.14 0.06 0.07 10.67
647.95 0.05 0.05 13.26
760.85 0.04 0.05 5.47
883.57 0.04 0.04 5.70
1251.73 0.03 0.03 2.07
1295.91 0.02 0.03 10.07
1482.44 0.02 0.02 1.12
1801.51 0.02 0.02 3.88
1978.22 0.02 0.02 5.87
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Table A.69: Comparison between model and data, Nho,Al6061T6,L-G

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
176.71 0.17 0.20 15.00
225.80 0.14 0.16 11.91
274.89 0.12 0.13 7.79
338.70 0.10 0.10 0.21
412.33 0.08 0.09 3.27
544.87 0.07 0.06 -2.02
643.04 0.06 0.05 -4.99
731.40 0.05 0.05 -4.56
878.66 0.04 0.04 -7.47
1021.02 0.04 0.03 -6.38
1227.18 0.03 0.03 -9.47
1467.71 0.03 0.02 -10.20
1668.97 0.02 0.02 -11.10
2002.77 0.02 0.02 -10.84
2316.92 0.02 0.02 -5.50
2719.44 0.01 0.01 -10.71

Table A.70: Comparison between model and data, Nho,Ni200,G-Al6061T6,L

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
215.98 0.39 0.50 22.28
245.44 0.39 0.44 11.99
269.98 0.36 0.40 10.03
323.98 0.40 0.33 -19.90
387.79 0.31 0.28 -9.96
436.88 0.28 0.25 -10.93
525.24 0.23 0.21 -13.92
598.87 0.20 0.18 -12.41
687.22 0.18 0.16 -13.49
805.03 0.15 0.13 -9.22
1011.20 0.12 0.11 -11.00
1217.37 0.10 0.09 -8.14
1418.63 0.07 0.08 4.24
1580.61 0.06 0.07 14.20
1988.04 0.04 0.05 20.05
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Table A.71: Comparison between model and data, Nho,Ni200,L-Al6061T6,G

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
235.62 0.40 0.45 9.77
284.71 0.33 0.37 10.03
319.07 0.30 0.33 9.24
373.06 0.26 0.28 8.90
436.88 0.23 0.24 4.27
535.05 0.19 0.20 5.30
589.05 0.18 0.18 -2.35
711.77 0.16 0.15 -5.17
854.12 0.12 0.12 -0.94
952.30 0.12 0.11 -7.46
1109.37 0.10 0.10 -1.34
1354.81 0.08 0.08 -3.01
1605.16 0.07 0.07 -2.02
1909.50 0.06 0.06 -2.62

Table A.72: Comparison between model and data, Nho,Ni200,G-L

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
309.25 0.69 1.17 40.77
343.61 0.64 1.06 39.02
446.70 0.55 0.81 31.74
535.05 0.52 0.68 23.76
579.23 0.49 0.63 21.86
672.50 0.44 0.54 19.18
785.40 0.39 0.46 14.68
957.20 0.36 0.38 5.24
1040.65 0.32 0.35 7.55
1237.00 0.28 0.29 5.18
1477.53 0.25 0.25 -0.12
1703.33 0.21 0.21 1.49
2027.31 0.18 0.18 -0.19
2326.74 0.16 0.16 -3.17
2793.07 0.13 0.13 -2.11
3180.86 0.11 0.11 2.61
3568.65 0.10 0.10 4.11
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Table A.73: Comparison between model and data, Nho,Ni200,L-G

F Rexp Rj
Rj−Rexp

Rj
%

N K/W K/W (−)
304.34 0.69 1.18 41.96
377.97 0.60 0.95 37.03
461.42 0.55 0.78 29.04
613.59 0.45 0.59 22.66
657.77 0.42 0.55 22.63
775.58 0.39 0.46 15.64
913.03 0.33 0.39 16.45
1178.10 0.28 0.31 8.11
1340.09 0.25 0.27 7.98
1462.80 0.22 0.25 11.03
1629.70 0.20 0.22 11.67
2027.31 0.16 0.18 8.44
2302.20 0.14 0.16 9.59
2788.16 0.12 0.13 8.00
2930.52 0.11 0.12 12.15
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Appendix B

Uncertainty Analysis

B.1 Introduction

The following is a discussion of the analysis made to estimate the maximum uncertainity in the

experimental measurements and the theoritical predictions of the thermal joint resistance in a

vacuum. The accuracy of the measurement system and the procedure and uncertainity of the

methods used for estimation of the surface parameters are discussed in Chapter six.

B.2 Differential Error Analysis Method

In order to estimate the uncertainty in the calculated result on the basis of the uncertainties in

the primary measurements, we will use the method explained as follows. Suppose the result R

is a given function of the independent variables x1, x2, ..., xn. Thus,

R = R(x1, x2, ..., xn)

Let wR be the uncertainty in the result and w1, w2, ..., wn be the uncertainties in the independent

variables. According to [83]:

wR =

"µ
∂R

∂x1
w1

¶2
+

µ
∂R

∂x2
w2

¶2
+ ...+

µ
∂R

∂xn
wn

¶2#1/2
(B.1)
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B.3 Thermal Measurements Uncertainty Analysis

The experimental joint resistance, of a particular joint was determined from the estimated heat

flux and the temperature drop across the interface.

Rexp = ∆T/Q (B.2)

As explained in Chapter six, the heat flux through the interface was measured by the Armco

iron flux meter. The heat loss was less than 6.7% under vacuum condition. The estimated

uncertainity in the heat flux was, therefore, ±3.35%.
The uncertainity in the temperature drop across the interface was the result of the uncer-

tainities associated with the thermocouple readings and the extrapolated temperatures. The

thermocouple readings were estimated to be accurate to ±0.1◦C. The estimated uncertainity
in the interface temperature drop by extrapolation of the temperature gradients was approx-

imately ±0.1◦C. Therefore, the overall uncertainity in the temperature drop across the joint
was, therefore, ±0.2◦C.

The recorded maximum temperature drop was as large as 103.4◦C and the minimum value

was approximately 50.2◦C. Thus, the fractional uncertainity in the temperature drop could be

as small as 0.2% and as much as 0.4%. Using a simple differential error analysis, Eq. (B.1) the

estimated uncertainity in the maesured joint resistance can be found from

wRexp =

"µ
∂Rexp
∂∆T

w∆T

¶2
+

µ
∂Rexp
∂Q

wQ

¶2#1/2
(B.3)

substituting partial derivates, it simplifies to

wRexp =

"µ
w∆T

Q

¶2
+

µ
∆T

Q2
wQ

¶2#1/2
(B.4)

where w∆T = 0.2
◦C and wQ is considered to be 3.35% of actual measurements. Tables B.1 to B.3

list the estimated uncertainities associated with the experimental data sets T1 to T3 in percent,

respectively. As can be seen, the uncertainity of thermal contact resistance measurements is

less than 4 percent.
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B.4 Uncertainty in TCR Predictions

Thermal joint resistance Rj is predicted by Eq. (5.25). For convinience, a summary of the

model is shown here.

Rj =
(1− aL/bL)1.5

2ksaL
+
0.565 (σ/m)H∗

ksF

where,

aL = 1.80 aH

√
α+ 0.31τ0.056

τ0.028

where α = σρ/a2H , τ = ρ/aH , H
∗ ≡ c1 (σ/mσ0)

c2 , and aH = (0.75Fρ/E0)1/3 . The uncertainty

associated with the prediction of the joint resistance is a function of σ,m, ρ, c1, c2, F,E0, ks, and

bL. Therefore, one can write.

Rj = Rj(σ,m, ρ, c1, c2, F,E
0, ks, bL) (B.5)

Using a simple differential error analysis method, i.e., Eq. (B.1), the uncertainty associated

with the model can be found from

wRj =

"µ
∂Rj
∂σ

wσ

¶2
+

µ
∂Rj
∂m

wm

¶2
+

µ
∂Rj
∂ρ

wρ

¶2
+

µ
∂Rj
∂c1

wc1

¶2
+µ

∂Rj
∂c2

wc2

¶2
+

µ
∂Rj
∂F

wF

¶2
+

µ
∂Rj
∂E0

wE0

¶2
+

µ
∂Rj
∂ks

wks

¶2
+

µ
∂Rj
∂bL

wbL

¶2#1/2 (B.6)

The estimated uncertainties for, effective surface roughness wσ, surface slope wm, and radius of

curvature wρ for tests T1 to T3 are listed in Table B.4. Uncertainties for other input parameters

are estimated as, microhardness coefficents ±5%, thermal conductivity ±3.1%, applied load
±0.1%, and the effective elasticity modulus ±2.5%; it is assumed that these uncertainties are
constant for all tests.

Using Maple [?], the uncertainties associate with experimental sets T1 to T3, i.e. Eq. (B.6),

are calculated and shown in Tables B.5 to B.7.

It can be seen that the uncertainties associated with data points decreases as the applied

load increases in all three tests. Also, as expected, the maximum uncertainty occurs in the

minimum applied load in T3. The averaged uncertainty associated with the joint resistance

prediction is 4.3 percent.
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Table B.1: Uncertainty associated with thermal joint resistance measurements, T1

Q ∆T Rexp wQ wR wR/Rexp%

W K K/W W K/W (−)
6.00 84.56 14.08 0.20 0.47 3.36
6.29 76.65 12.19 0.21 0.41 3.36
7.03 66.18 9.42 0.24 0.32 3.36
9.18 70.54 7.68 0.31 0.26 3.36
12.94 86.85 6.71 0.43 0.23 3.36
19.31 103.40 5.35 0.65 0.18 3.36

Table B.2: Uncertainty associated with thermal joint resistance measurements, T2

Q ∆T Rexp wQ wR wR/Rexp%

W K K/W W K/W (−)
3.96 85.06 21.50 0.13 0.72 3.36
5.02 87.80 17.50 0.17 0.59 3.36
5.09 70.25 13.80 0.17 0.46 3.36
5.76 62.79 10.90 0.19 0.37 3.37
6.05 61.07 10.10 0.20 0.34 3.37
9.37 66.54 7.10 0.31 0.24 3.36

Table B.3: Uncertainty associated with thermal joint resistance measurements, T3

Q ∆T Rexp wQ wR wR/Rexp%

W K K/W W K/W (−)
0.78 62.25 79.93 0.03 2.69 3.37
1.45 70.47 48.50 0.05 1.63 3.36
2.60 76.84 29.60 0.09 0.99 3.36
3.62 78.89 21.80 0.12 0.73 3.36
5.87 80.99 13.80 0.20 0.46 3.36
6.93 79.74 11.50 0.23 0.39 3.36
7.70 74.67 9.70 0.26 0.33 3.36
9.72 76.80 7.90 0.33 0.27 3.36
10.38 77.88 7.50 0.35 0.25 3.36
13.98 81.07 5.80 0.47 0.19 3.36

Table B.4: Input parameters uncertainties

Parameter T1 T2 T3
wσ µm 0.17 0.09 0.18
wm (−) 0.009 0.004 0.009
wρ m 0.02 0.018 0.02
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Table B.5: Uncertainty associated with thermal joint resistance predictions, T1

F ks Rj wRj wRj/Rj%

N W/mK K/W K/W (−)
373.15 18.57 13.67 0.71 5.20
495.33 18.51 11.94 0.55 4.65
869.38 18.47 9.33 0.36 3.90
1381.50 18.67 7.64 0.27 3.50
1740.90 19.08 6.82 0.23 3.35
2656.10 19.71 5.57 0.18 3.16

Table B.6: Uncertainty associated with thermal joint resistance predictions, T2

F ks Rj wRj wRj/Rj%

N W/mK K/W K/W (−)
210.95 18.50 20.46 0.68 3.32
303.64 18.65 17.05 0.59 3.47
445.73 18.56 14.58 0.48 3.27
883.56 18.74 11.25 0.35 3.10
1116.90 19.02 10.24 0.31 3.07
2577.40 19.42 7.59 0.23 3.07

Table B.7: Uncertainty associated with thermal joint resistance predictions, T3

F ks Rj wRj wRj/Rj%

N W/mK K/W K/W (−)
31.25 18.08 81.74 8.44 10.33
48.50 18.19 49.71 5.10 10.26
110.09 18.30 29.21 2.26 7.73
189.24 18.39 20.68 1.29 6.23
409.29 18.49 13.12 0.61 4.66
600.53 18.57 10.90 0.44 4.06
795.78 18.60 9.63 0.36 3.76
1110.20 18.70 8.38 0.29 3.49
1338.64 18.81 7.69 0.26 3.40
2561.50 18.93 5.89 0.19 3.20
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Appendix C

Computer Program

A computer code in Visual Basic is written to solve the governing mechanical relationships

discussed in chapter three. Thermal joint resistance is claculated according to the procedure

explained in chapter four.

The code is written based on the algorithms described in chapter three.

C.1 The Code

Dim Omega() As Double ’ half-space deformation

Dim PS() As Double ’ Pressure

Dim Hard() As Double ’ MicroHardness

Dim PSNew() As Double ’ Pressure new value

Public uR0 As Double ’ Max. Sphere indentation (m)

Public C1 As Double ’ Const.1 for Hegazy’s microhardness correlation

Public C2 As Double ’ Const.2 for Hegazy’s microhardness correlation

Public Hcont As Double ’ effective contact microhardness defined by Heggazy (GPa)

Public Sigma As Double ’ Equivalent Roughness (m)

Public Sigma1 As Double ’ Roughness surface 1 (micro m)

Public Sigma2 As Double ’ Roughness surface 2 (micro m)

Public Rho As Double ’ Equivalent Sphere Radius (m)

Public NPoint As Integer ’ No of points in r-direction
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Public Ep As Double ’ Equivalent elastic modulus (Pa) ”E Prime”

Public drS As Double ’increment in the r-direction

Public rInfS As Double ’ infinity r

Public Fext As Double ’ External Force (N)

Public Counter As Integer ’ counter of the Main Loop

Public AEPS As Double ’ Max error of pressure distribution

Public pHertz0 As Double ’ Max. Pressure in Hertz

Public aH As Double ’ Hertz contact radius (m)

Public uH As Double ’ Hertz Max. indentation (m)

Public bLg As Double ’Outer radius of the sample (m)

Public MeanSlope ’ Mean absolute profile Slope

Public ForceError As Double ’ Force Error

Public Gamma As Double ’ Plasticity index

Public ModelFlag As Integer ’ plastic=2, elastic=1

Public Alpha As Double ’ Alpha roughness level

Public TOL1 As Double ’ Tolerance of the first iteration loop

Public mCounter As Integer ’ The main loop counter

Public PlasticIndex As Double ’ The plastic index (-)

Public u0 As Double

Public u1 As Double

Public UnderRFac As Double ’ Under relaxation Factor , when =1 no relaxation !

Public Pi As Double ’ Pi Number

Private Sub Command1_Click()

Dim dRh As Double

Dim rsH As Double

Dim ICheck As Integer

Dim m1 As Double ’ mean slope of surface 1

Dim m2 As Double ’ mean slope of surface 2

Dim v1 As Double ’ Poisson Ratio 1

Dim v2 As Double ’ Poisson Ratio 2
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Dim rho1 As Double ’ radius 1

Dim rho2 As Double ’ radius 2

Dim E1 As Double ’ Young Modulus 1

Dim E2 As Double ’ Young Modulus 1

’ Dummy variables

Dim iG As Integer

Dim IaL As Integer

Dim tau As Double ’tau

NPoint = 50

Pi = 3.141592654

TOL1 = 0.0001

ReDim Omega(NPoint + 1)

ReDim PS(NPoint + 1)

ReDim PSNew(NPoint + 1)

ReDim Hard(NPoint + 1)

’ Input data

’ E prime

v1 = 0.3

v2 = 0.3

E1 = 204000000000#

E2 = 204000000000#

Ep = ((1 - v1 ^2) / E1 + (1 - v2 ^2) / E2) ^(-1) ’(Pa)

’Ep = 112600000000#

’ Rho

Rho = 150 ’(m)

’Sample radius (m)

bLg = Rho

’ Sigma

Sigma1 = 1 ’ Micrometer

Sigma2 = 1 ’ Micrometer
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’Sigma = 0.000001 * Sqr(Sigma1 ^2 + Sigma2 ^2) ’ (m)

Sigma = 20 * 0.000001

’ Hegazy’s Microhardness Coefficients (GPa)

C1 = 6.23

C2 = -0.23

’ External Force (N)

Fext = 200

UnderRFac = 0.25 ’ under relaxation factor

’ Finding the range for the solution, i.e. ef0*ef1 < 0

u0 = -4.1 * Sigma

’eF0 = (Fext - IntFextS) / Fext

u1 = -4.3 * Sigma

’ Mean slope using Lambert Correlation

m1 = 0.076 * Sigma1 ^0.52

m2 = 0.076 * Sigma2 ^0.52

MeanSlope = Sqr(m1 ^2 + m2 ^2)

MeanSlope = 0.076 * (Sigma * 1000000#) ^0.52

’ Hegazy’s effective contact microhardness

Hcont = C1 * (0.95 * Sigma * 1000000# / MeanSlope) ^C2

’ Plastic Index

PlasticIndex = Ep * MeanSlope / (C1 * 1000000000# * (Sigma * 1000000# / MeanSlope)

^C2)

’ Hertz parameters (smooth surfaces)

aH = (3 * Fext * Rho / 4 / Ep) ^(1 / 3) ’ from Hertz’s solution

uH = aH ^2 / Rho

pHertz0 = 3 * Fext / 2 / Pi / aH ^2

’ Johnson’s alpha

Alpha = Sigma * Rho / aH ^2

tau = Rho / aH

IaL = 1.5 * Sqr(Alpha + 0.46) + 1
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rInfS = aH * IaL

If rInfS > bLg Then rInfS = bLg

’rInfS = bLg

drS = rInfS / NPoint

’ Mikic’s plasticity index

Gamma = Hcont * 1000000000# / MeanSlope / Ep

’ Elastic or plastic deformation of asperities

’ModelFlag = 1 ’ elastic model

ModelFlag = 2 ’ plastic model

’ Itteration on uR0 (Main Loop)

HalvingDistance

’FactorMethod

MsgBox ”All Done!”, 0 + 48, ””

Label24.Caption = IntFextS

Results

End Sub

Public Function EllipticK(xK As Double) As Double

’ Calculate Compelete Elliptic Integral of the first kind ”K”, using Yovanovich, Lemczyk

1988

Dim xp As Double ’ Complementary modulus

Dim e As Double

Dim u As Double

Dim q As Double

Dim K As Double

Pi = 3.141592654

xp = Sqr(1 - xK ^2)

u = Sqr(xK)

up = Sqr(xp)

If xK < 0.9999 Then

If xK < 1 / Sqr(2) Then
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e = (1 - up) / (1 + up) / 2

Else

e = (1 - u) / (1 + u) / 2

End If

q = e + 2 * e ^5 + 15 * e ^9 + 150 * e ^13

K = Pi * (1 + 2 * q + 2 * q ^4 + 2 * q ^9) ^2 / 2

If xK < 1 / Sqr(2) Then

EllipticK = K

Else

EllipticK = -K * Log(q) / Pi

End If

Else

EllipticK = 10 ’....not to get the division by zero!!

End If

End Function

Public Function EllipticE(xE As Double) As Double

’ Calculate Compelete Elliptic Integral of the Second kind ”E”, using Yovanovich, Lemczyk

1988

Dim xp As Double ’ Complementary modulus

Dim e As Double

Dim u As Double

Dim q As Double

Dim K As Double

Dim Kp As Double

Dim Elp As Double

Pi = 3.141592654

xp = Sqr(1 - xE ^2)

u = Sqr(xE)

up = Sqr(xp)

If xE = 1 Then
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EllipticE = 1

Else

If xE < 1 / Sqr(2) Then

e = (1 - up) / (1 + up) / 2

Else

e = (1 - u) / (1 + u) / 2

End If

q = e + 2 * e ^5 + 15 * e ^9 + 150 * e ^13

K = Pi * (1 + 2 * q + 2 * q ^4 + 2 * q ^9) ^2 / 2

Elp = Pi ^2 * ((1 + 9 * q ^2 + 25 * q ^6 + 49 * q ^12) / (1 + q ^2 + q ^6)) / 4 / K

If xE < 1 / Sqr(2) Then

EllipticE = Elp

Else

Kp = -K * Log(q) / Pi

EllipticE = (Pi / 2 + Kp * (K - Elp)) / K

End If

End If

End Function

Public Function IntFextS() As Double

’ Integrate over 0...r Infinity interval using n panels ” cal. External Force”

Dim DeltaInt As Double ’ Integration differential

Dim P1 As Double ’ Numerical Integration point 1

Dim P2 As Double ’ Numerical Integration point 2

Dim Intsum As Double ’ Numerical Integration

Dim iInt As Integer ’ an Integer Countor

Dim aa As Double ’ Internal variable

DeltaInt = drS

Intsum = 0

For iInt = 1 To NPoint

P1 = (iInt - 1) * DeltaInt
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P2 = iInt * DeltaInt

Intsum = Intsum + (P1 * PSNew(iInt) + P2 * PSNew(iInt + 1)) * DeltaInt / 2

Next

IntFextS = 2 * Pi * Intsum

End Function

Public Function IntOmega(iLocation As Integer) As Double

’ Integrate over 0...r Infinity interval using n panels ” omega(r)”

Dim DeltaInt As Double ’ Integration differential

Dim P1 As Double ’ Numerical Integration point 1

Dim P2 As Double ’ Numerical Integration point 2

Dim Pave As Double ’ Average value of pressure

Dim Intsum As Double ’ Numerical Integration

Dim ii As Integer ’ an Integer Countor

Dim r As Double

Intsum = 0

If iLocation = 1 Then ’ Case r=0

DeltaInt = drS

For ii = 1 To NPoint - 1

Intsum = Intsum + (PS(ii) + PS(ii + 1)) * DeltaInt / 2

Next

Intsum = Intsum + PS(NPoint) * DeltaInt

IntOmega = 2 * Intsum / Ep

Else ’ Case r>0

r = (iLocation - 1) * drS ’ calculating r

’ first Summation, integral from 0 to r , r>t

For ii = 1 To iLocation - 1

Pave = (PS(ii) + PS(ii + 1)) / 2

P1 = (ii - 1) * drS / r

P2 = (ii) * drS / r

Intsum = Intsum + Pave * (LEI(P2) - LEI(P1))
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Next

’ second summation, integral from r to rInf , t> &=r

For ii = iLocation To NPoint - 1

Pave = (PS(ii) + PS(ii + 1)) / 2

P1 = (ii - 1) * drS / r

P2 = (ii) * drS / r

Intsum = Intsum + Pave * (P2 * EllipticE(1 / P2) - P1 * EllipticE(1 / P1))

Next

IntOmega = 4 * r * Intsum / Pi / Ep

End If

End Function

Public Function PStar(iP As Integer) As Double

’calculate the effective local microhardness based on the Hegazy’s correlation for plastic

model

’calculate the effective elastic hardness based on Mikic model

Dim dv As Double ’Equivalent Vickers’s diameter

Dim LambdaMe As Double ’ the lambda this routine is called for!

Dim ErfLam As Double

Dim HMin As Double ’ Min. Limit for Hardness

Dim aContact As Double ’Microcontact spot radius (m)

LambdaMe = LambdaS(iP)

ErfLam = ERFC(LambdaMe)

If ModelFlag = 2 Then ’ plastic

If ErfLam > 0 Then

aContact = (Sqr(8 / Pi) * Sigma / MeanSlope) * Exp((LambdaMe) ^2) * ErfLam

dv = 1000000# * Sqr(2 * Pi) * aContact ’a Mic. should be in Micrometer

Hard(iP) = C1 * dv ^C2 ’ gives in GPa

Else

Hard(iP) = 0

End If
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Hard(iP) = Hard(iP) * 1000000000# ’ Convert to (Pa)

’Hard(iP) = C1 * 1000000000#

PStar = Hard(iP) * ErfLam / 2

Else ’ elastic

PStar = Ep * MeanSlope * ErfLam / 4 / Sqr(2)

End If

End Function

Public Function aMic(iA As Integer) As Double

’Calculate the contact spots radius

aMic = (Sqr(2 * ModelFlag ^2 / Pi) * Sigma / MeanSlope) * Exp((LambdaS(iA)) ^2) *

ERFC(LambdaS(iA))

End Function

Private Sub Command3_Click()

End

End Sub

Public Function ERFC(x As Double) As Double

’ Calculate Efrc using numerical Integration

Dim DeltaInt As Double ’ Integration differential

Dim P1 As Double ’ Numerical Integration point 1

Dim P2 As Double ’ Numerical Integration point 2

Dim Intsum As Double ’ Numerical Integration

Dim ii As Integer ’ an Integer Countor

Pi = 3.141592654

If x < 1 Then

n = 30

ElseIf x > 1 And x < 2 Then

n = 70

ElseIf x > 2 And x < 4.2 Then

n = 150

Else
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n = 1

End If

DeltaInt = x / n

Intsum = 0

For ii = 1 To n

P1 = (ii - 1) * DeltaInt

P2 = ii * DeltaInt

Intsum = Intsum + (Exp(-P1 ^2) + Exp(-P2 ^2)) * DeltaInt / 2

Next

If x > 4.2 Then

ERFC = 0

Else

ERFC = 1 - 2 * Intsum / Sqr(Pi)

End If

End Function

Public Sub ShowTrend()

’ internal variables

Dim tt As String

Dim tj As String

Dim qj As String

Dim J As Integer

Dim q As Double

Dim I As Integer

Dim ii As String

I = Int(NPoint / 2)

J = Int(NPoint / 4)

Label2.Caption = PSNew(1) / pHertz0

Label3.Caption = PSNew(3) / pHertz0

Label4.Caption = PSNew(J) / pHertz0

Label5.Caption = PSNew(I) / pHertz0
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Label6.Caption = PSNew(NPoint - 4) / pHertz0

Label15.Caption = Omega(1) / Sigma

Label16.Caption = Omega(3) / Sigma

Label17.Caption = Omega(J) / Sigma

Label18.Caption = Omega(I) / Sigma

Label19.Caption = Omega(NPoint - 4) / Sigma

’Label9.Caption = uR0S(Counter)

MsgBox ”Ready to Go!”, 0 + 48, ””

End Sub

Public Function LambdaS(iL As Integer) As Double

’ calculate the non-dimensional separation with the new value of deformation ”omega new”

Dim rS1 As Double

Dim uRr As Double ’ Sphere profile at radial location

rS1 = (iL - 1) * drS

uRr = uR0 - rS1 ^2 / 2 / Rho

LambdaS = (Omega(iL) - uRr) / Sigma / Sqr(2)

’LambdaS = (uR0 + Omega(iL) + rS1 ^2 / 2 / Rho - Omega(1)) / Sigma / Sqr(2)

End Function

Public Sub Conv1()

Dim iconv As Integer

Dim IEMax As Integer

Dim PMax As Double

Dim dmax As Double

IEMax = 1

AEPS = Abs(PSNew(1) - PS(1))

For iconv = 2 To NPoint

dmax = Abs(PS(iconv) - PSNew(iconv))

If dmax > AEPS Then

IEMax = iconv
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AEPS = dmax

End If

Next

PMax = PSNew(IEMax)

If PSNew(IEMax) < PS(IEMax) Then PMax = PS(IEMax)

AEPS = AEPS / PMax

Label25.Caption = IEMax

End Sub

Public Sub FirstLoop()

’First itteration loop calculating proper omega and pressure distribution

Dim Cont1 As Integer

Dim TOL As Double ’ Tolerance of the first iteration loop

Dim iLoop1 As Integer

TOL = 0.001

Cont1 = 0

Do

If Cont1 > 0 Then ’ if not the first iteration , update the pressure & deformation

For iLoop1 = 1 To NPoint + 1

PS(iLoop1) = UnderRFac * PSNew(iLoop1) + (1 - UnderRFac) * PS(iLoop1)

Next

End If

’ Calculate omega(r) and new press. distribution

For iLoop1 = 1 To NPoint + 1

Omega(iLoop1) = IntOmega(iLoop1)

PSNew(iLoop1) = PStar(iLoop1)

Next

Conv1 ’ calculates the Max. difference in press. distribution

Cont1 = Cont1 + 1

Label13.Caption = Cont1

Label14.Caption = AEPS
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’ ShowTrend

Loop Until (AEPS < TOL)

End Sub

Public Sub Results()

Dim I As Integer

Dim IaL As Integer ’ Location of aL in the mesh

Dim rS1 As Double

Dim III As Integer

Dim Epsilon As Double ’ epsilon sqrt(Ar/Aa)

Dim AveEps As Double ’ Average epsilon in aL

Dim aMic As Double ’Local Contact spot size (m)

Dim AveaMic As Double ’average Contact spot size (m)

Dim ErfcLam As Double

Dim eta As Double ’ Local density of contact spots (ns/Aa)

Dim Aveeta As Double ’ Ave density of contact spots (ns/Aa)

Dim MacArea As Double ’ Macrocontact area (m^2)

Dim aL As Double ’ macro contact radius based on 99% of total load (m)

Dim nss As Double ’ local no of micro contact spots, nss(r)

Dim Tnss As Double ’ Total no of micro contact spots

Dim Intsum As Double ’ summation

Dim AveHard As Double ’ Average Microhardness (Pa)

Dim Rss As Double ’ Local Non-dimensional micro resistance

Dim dRss As Double ’ Non-dimensional element micro resistance

Dim RssT As Double ’ Non-dimensional Micro resistance

Dim RLL As Double ’ Non-dimensional macro resistance

Dim RLHz As Double ’ Non-dimensional Hertz macro resistance

Dim Rj As Double ’ Non-dimensional joint resistance

Dim hCs As Double ’ Thermal Conductance for each element / by ks [1/m]

Dim RjhC As Double ’Non-dimensional Joint Thermal ressitance using Conductance method

Dim P1 As Double ’ dummy
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Dim P2 As Double ’ dummy

Dim hc1 As Double ’ dummy

Dim hc2 As Double ’ dummy

Dim averageNum As Integer

Dim PressFac As Double ’ the factor for macro area calculating

’ calculate aL based on 1% of the max pressure

DeltaInt = drS

Intsum = 0

For I = 1 To NPoint - 1

P1 = (I - 1) * DeltaInt

P2 = PSNew(I) / PSNew(1)

If (P2 < 0.01) Then

IaL = I

Exit For

End If

Next

aL = P1

MacArea = Pi * aL ^2

III = IaL

If IaL = 0 Then

III = NPoint

aL = bLg

End If

If aH < bLg Then

If aL < aH Then aL = aH

End If

’ calculating Macro thermal resistance

If aL > bLg Then

RLL = 0

Else
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RLL = (1 - aL / bLg) ^(1.5) * (Rho / aL)

End If

If aH < bLg Then

RLHz = (1 - aH / bLg) ^(1.5) * (Rho / aH)

Else

RLHz = 0

End If

’output general parameters

Open ”C:\Documents and Settings\majid\Thesis\ResultOut.txt” For Output As #2
Print #2, NPoint, aH, pHertz0, Rho, Ep, C1, C2, Fext, Sigma, aL, MacArea, MeanSlope,

bLg, Hcont

AveaMic = 0 ’ summation average aMic

Tnss = 0 ’ summation total ns

AveEps = 0 ’summation average epsilon

RssT = 0 ’ summation of micro resiatnace

Aveeta = 0 ’ summation average eta

AveHard = 0 ’ summation average microhardness

averageNum = 0

’ output local parameters

For I = 1 To NPoint

rS1 = (I - 1) * drS

ErfcLam = ERFC(LambdaS(I))

’ calculate local epsilon

Epsilon = Sqr(ModelFlag * ErfcLam / 4)

If ErfcLam > 0 Then

’ calculate local contact spot size

aMic = Sqr(2 * ModelFlag ^2 / Pi) * (Sigma / MeanSlope) * Exp((LambdaS(I)) ^2) *

ErfcLam

’ calculate local spot density

eta = (MeanSlope / Sigma) ^2 * Exp(-2 * LambdaS(I) ^2) / ErfcLam / 16
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’ calculate local number of spots

nss = eta * 2 * Pi * rS1 * drS

Else

eta = 0

nss = 0

aMic = 0

End If

If aMic = 0 Then

Rss = 100000000000#

Else

’calculating local non-dimensional micro thermal resistance

Rss = (1 - Epsilon) ^(1.5) * (Rho / aMic)

End If

dRss = nss / Rss ’ reciprocal of the element resistance

’calculating average parameters

If I < III Then

averageNum = averageNum + 1

AveaMic = AveaMic + aMic

AveEps = AveEps + Epsilon

Aveeta = Aveeta + eta

Tnss = Tnss + nss

RssT = RssT + dRss

AveHard = Hard(I) + AveHard

End If

’RssT = RssT + dRss

If I > III Then

If rS1 < bLg Then RssT = RssT + dRss

End If

If Hard(I) = 0 Then

hCs = 0
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Else

hCs = 1.25 * (MeanSlope / Sigma) * (PSNew(I) / Hard(I)) ^0.95

End If

Print #2, rS1, PSNew(I), Omega(I), LambdaS(I), Epsilon, aMic, eta, nss, Rss, Hard(I),

hCs

Next

AveaMic = AveaMic / averageNum

AveEps = AveEps / averageNum

Aveeta = Aveeta / averageNum

AveHard = AveHard / averageNum

If ModelFlag = 1 Then AveHard = Ep * MeanSlope / 2 / Sqr(2) ’ elastic microhardness

RssT = 1 / RssT

Rj = RssT + RLL ’ non-dimensional joint resistance

If ModelFlag = 2 Then ’ plastic model

’calculating the total thermal conductance (non-dimensional)

DeltaInt = drS

Intsum = 0

For I = 1 To NPoint

P1 = (I - 1) * DeltaInt

P2 = I * DeltaInt

If Hard(I - 1) = 0 Then

hc1 = 0

Else

hc1 = 1.25 * (MeanSlope / Sigma) * (PSNew(I - 1) / Hard(I - 1)) ^0.95

End If

If Hard(I) = 0 Then

hc2 = 0

Else

hc2 = 1.25 * (MeanSlope / Sigma) * (PSNew(I) / Hard(I)) ^0.95

End If
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Intsum = Intsum + (P1 * hc1 + P2 * hc2) * DeltaInt / 2

Next

RjhC = 1 / (Intsum * Pi / Rho)

End If

’printing average values

Print #2, Tnss, AveaMic, AveEps, Aveeta, AveHard, RLL, RLHz, RssT, Rj, RjhC, Plas-

ticIndex, Alpha

Close #2

End Sub

Public Function LEI(x As Double) As Double

’ calculate needed function for r>t

If x < 0.999 Then

LEI = (x ^2 - 1) * EllipticK(x) + EllipticE(x)

Else

LEI = 1

End If

End Function

Public Sub FactorMethod()

Dim ErF(2) As Double ’ Error of external force (—)

Dim Eu0(2) As Double ’ Deflection point 1&2

Dim iLoopM As Integer

Dim ForceRatio As Double ’ ratio of calculated to real external load

Dim Beta As Double ’ Correction factor for UR0

mCounter = 1

uR0 = -2.64 * Sigma

’uR0 = 0.01 * uH

Do

For iLoopM = 1 To 2

If iLoopM = 2 Then ’if not the first point
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If ErF(1) < 0 Then ’––—calculated force is bigger

Beta = (1.01151) ^(1 / 2 ^mCounter) ’ old version

Else

Beta = (0.9995) ^(1 / 2 ^mCounter) ’ old version

End If

uR0 = Beta * uR0

End If

FirstLoop

’ calculate the Force due to the press. dist.

ForceRatio = Fext / IntFextS

ErF(iLoopM) = (Fext - IntFextS) / Fext

Eu0(iLoopM) = uR0

Next

Label7.Caption = mCounter

Label20.Caption = Eu0(2) / Sigma

Label9.Caption = Eu0(1) / Sigma

Label21.Caption = ErF(2)

Label11.Caption = ErF(1)

mCounter = mCounter + 1

uR0 = ((ErF(1) * Eu0(2) - ErF(2) * Eu0(1)) / (ErF(1) - ErF(2)))

FirstLoop

ForceError = (Fext - IntFextS) / Fext

Label23.Caption = ForceError

MsgBox ”Ready to Go!”, 0 + 48, ””

Loop Until (Abs(ForceError) < TOL1)

End Sub

Public Sub HalvingDistance()

’ The Secant variables

Dim CCC As Double ’ the coefficent to estimate the other bound of the solution

Dim u2 As Double

222



Dim eF0 As Double

Dim eF1 As Double

Dim eF2 As Double

mCounter = 1

uR0 = u0

FirstLoop

eF0 = (Fext - IntFextS) / Fext

If Abs(eF0) < TOL1 Then Exit Sub

uR0 = u1

FirstLoop

eF1 = (Fext - IntFextS) / Fext

If Abs(eF1) < TOL1 Then Exit Sub

Label9.Caption = u0 / Sigma

Label20.Caption = u1 / Sigma

Label11.Caption = eF0

Label21.Caption = eF1

Label7.Caption = mCounter

MsgBox ”Ready to Go!”, 0 + 48, ””

’ Halving the distance method

Do

mCounter = mCounter + 1

u2 = u1 - eF1 * (u1 - u0) / (eF1 - eF0)

uR0 = u2

FirstLoop

eF2 = (Fext - IntFextS) / Fext

If Abs(eF2) < TOL1 Then Exit Do

Label23.Caption = eF2

If eF0 * eF2 < 0 Then

u1 = u2

eF1 = eF2
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Else

u0 = u2

eF0 = eF2

End If

Label9.Caption = u0 / Sigma

Label20.Caption = u1 / Sigma

Label11.Caption = eF0

Label21.Caption = eF1

Label7.Caption = mCounter

MsgBox ”Ready to Go!”, 0 + 48, ””

Loop Until (Abs(eF2) < TOL1)

End Sub
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Appendix D

Radiation Conductance

The following is an investigation to study the relative importance of the radiation heat transfer

in thermal joint conductance in a vacuum. In order to perform this analysis, the relative

magnitude of the radiation over conduction is calculated over an applicable joint temperature

for a typical contact. The radiation heat transfer between two contacting bodies can be found

from

Qr = σSB AaF12
¡
T 4j,1 − T 4j,2

¢
(D.1)

where σSB = 5.67 × 10−8 W/ ¡m2K4
¢
and F12 are the Stefan-Boltzmann constant and the

radiative parameter, respectively. Absolute joint temperatures Tj,1 and Tj,2 are found by ex-

trapolating the temperature profiles in body 1 and 2, respectively. The radiative parameter is

given by F12 = 1/²1 + 1/²2 − 1 where ²1 and ²2 are the emissivities of the contacting surfaces.
Using the definition of the thermal conductance, hr = ∆T/Qr, the radiative conductance can

be calculated from [72]

hr ≡ 4σSB F12 T 3j (D.2)

where
T 4j,1 − T 4j,2
Tj,1 − Tj,2 ≈ 4T

3
j

where Tj = 2 (Tj,1 + Tj,2) is the mean joint temperature.
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The microcontacts conductance for conforming rough joints is [8]

hc = 1.25ks

³m
σ

´µ P

Hmic

¶0.95
(D.3)

Thus ratio of radiation conductance over the microcontact conductance is

hr
hc
=

4σSB F12T
3
j

1.25 ks (m/σ) (P/Hmic)
0.95 (D.4)

If we assume black body radiation across the gap, ²1 = ²2 = 1 gives F12 = 1; also we consider a

relatively low contact pressure and low thermal conductivity with contact parameters as follows:

ks = 20 W/mK, σ = 1 µm, m = 0.1, and P/Hmic = 10−4. These assumptions give the upper

bound on the radiation conductance. Using these input parameters, the ratio of hr/hc can be

calculated as a function of the mean joint temperature Tj . Table D.1 lists the ratio of hr/hc,

for an upper bound of radiative conductance, over a wide range of joint temperatures.

Table D.1: Relative importance of radiative conductance as function of joint temperature, upper
bound

Tj hr/hc
K (−)
300 0.015
400 0.037
500 0.072
550 0.095
600 0.124
650 0.157
700 0.196

If a typical rough interface is considered, with ²1 = ²2 = 0.8, ks = 20 W/mK, σ = 1 µm,

m = 0.1, 300 ≤ Tj ≤ 400 and P/Hmic = 5×10−4. The ratio of hr/hc for the range of interest of
the joint temperature Tj will be 0.005 and 0.012, respectively. It means, the relative magnitude

of the radiative heat transfer to the microcontacts conduction is less than 1.2 percent for the

range of interest and can be neglected. As shown in Table D.1, the radiation conductance

becomes relatively important when the interface is formed by two very rough, very hard low-

conductivity solids under very light contact pressure at very high joint temperature. Therefore,

for many practical applications, the radiative conductance can be neglected.
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